在邊長為2的正方形ABCD中,點O為邊AB的中點,在正方形ABCD內(nèi)隨機取一點P,則點P到點O的距離大于1的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:本題考查的知識點是幾何概型,關鍵是要找出點到O的距離大于1的點對應的圖形的面積,并將其和正方形面積一齊代入幾何概型計算公式進行求解.
解答: 解:在正方形ABCD內(nèi)隨機取一點P,點P到點O的距離等于1的軌跡是以O為圓心,1為半徑的半圓,面積為
π
2
,
∵正方形的面積為4,
∴點P到點O的距離大于1的概率為1-
π
2
4
=1-
π
8

故答案為:1-
π
8
點評:幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關,而與形狀和位置無關.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)學與文學之間存在著許多奇妙的聯(lián)系.詩中有回文詩,如:“云邊月影沙邊雁,水外天光山外樹”,倒過來讀,便是“樹外山光天外水,雁邊沙影月邊云”,其意境和韻味讀來是一種享受!數(shù)學中也有回文數(shù),如:88,454,7337,43534等都是回文數(shù),無論從左往右讀,還是從右往左讀,都是同一個數(shù),稱這樣的數(shù)為“回文數(shù)”,讀起來還真有趣!
二位的回文數(shù)有11,22,33,44,55,66,77,88,99,共9個;
三位的回文數(shù)有101,111,121,131,…,969,979,989,999,共90個;
四位的回文數(shù)有1001,1111,1221,…,9669,9779,9889,9999,共90個;
由此推測:11位的回文數(shù)總共有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,將正整數(shù)排成三角形數(shù)陣,每排的數(shù)稱為一個群,從上到下順次為第一群,第二群,…,第n群,…,第n群恰好n個數(shù),則第n群中n個數(shù)的和是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓錐的側面展開圖是半徑為3,圓心角為
3
的扇形,則這個圓錐的高是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若AB=
3
,∠B=45°,∠C=60°,則AC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
2+2cos4
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我校社團將舉行一屆象棋比賽,規(guī)則如下:兩名選手比賽時,每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿6局時結束.假設選手甲與選手乙比賽時,甲每局獲勝的概率皆為
2
3
,且各局比賽勝負互不影響.設ξ表示比賽停止時已比賽的局數(shù),則隨機變量ξ的數(shù)學期望為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)y=f(x),如果存在區(qū)間[m,n](m<n),當定義域是[m,n]時,f(x)的值域也是[m,n],則稱f(x)在[m,n]上是“和諧函數(shù)”,且[m,n]為該函數(shù)的“和諧區(qū)間”.現(xiàn)有以下命題:
①f(x)=(x-1)2在[0,1]是“和諧函數(shù)”;
②恰有兩個不同的正數(shù)a使f(x)=(x-1)2在[0,a]是“和諧函數(shù)”;
③f(x)=
1
x
+k對任意的k∈R都存在“和諧區(qū)間”;
④由方程x|x|+y|y|=1確定的函數(shù)y=f(x)必存在“和諧區(qū)間”.
其中正確的命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x<3},N={x|2<x<4},則M∩N=( 。
A、∅
B、{x|0<x<3}
C、{x|1<x<3}
D、{x|2<x<3}

查看答案和解析>>

同步練習冊答案