A. | 4 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{5}{3}$ |
分析 設(shè)圓M與△PF1F2的三邊F1F2、PF1、PF2分別相切于點(diǎn)E、F、G,連接ME、MF、MG,可得△MF1F2,△MPF1,△MPF2可看作三個(gè)高相等且均為圓I半徑r的三角形.利用三角形面積公式,代入已知式,化簡(jiǎn)可得|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,再結(jié)合雙曲線(xiàn)的定義與離心率的公式,可求出此雙曲線(xiàn)的離心率.
解答 解:如圖,設(shè)圓M與△PF1F2的三邊F1F2、PF1、PF2分別相切于點(diǎn)E、F、G,連接ME、MF、MG,
則ME⊥F1F2,MF⊥PF1,MG⊥PF2,它們分別是
△MF1F2,△MPF1,△MPF2的高,
∴${S}_{△MP{F}_{1}}$=$\frac{1}{2}×$|PF1|×|MF|=$\frac{r}{2}$|PF1|,
S${\;}_{△MP{F}_{2}}$=$\frac{1}{2}×$|PF2|×|MG|=$\frac{r}{2}$|PF2|
S${\;}_{△M{F}_{1}{F}_{2}}$=$\frac{1}{2}$×|F1F2|×|ME|=$\frac{r}{2}$|F1F2|,其中r是△PF1F2的內(nèi)切圓的半徑.
∵S${\;}_{△MP{F}_{1}}$=S${\;}_{△MP{F}_{2}}$+$\frac{1}{2}$S${\;}_{△M{F}_{1}{F}_{2}}$
∴$\frac{r}{2}$|PF1|=$\frac{r}{2}$|PF2|+$\frac{r}{4}$|F1F2|
兩邊約去$\frac{r}{2}$得:|PF1|=|PF2|+$\frac{1}{2}$|F1F2|
∴|PF1|-|PF2|=$\frac{1}{2}$|F1F2|
根據(jù)雙曲線(xiàn)定義,得|PF1|-|PF2|=2a,|F1F2|=2c
∴2a=c⇒離心率為e=$\frac{c}{a}$=2
故選C.
點(diǎn)評(píng) 本題將三角形的內(nèi)切圓放入到雙曲線(xiàn)當(dāng)中,用來(lái)求雙曲線(xiàn)的離心率,著重考查了雙曲線(xiàn)的基本性質(zhì)、三角形內(nèi)切圓的性質(zhì)和面積計(jì)算公式等知識(shí)點(diǎn),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | -4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com