【題目】已知函數(shù)f(x)=|2x﹣1|.
(1)若不等式f(x+ )≥2m+1(m>0)的解集為(﹣∞,﹣2]∪[2,+∞),求實(shí)數(shù)m的值;
(2)若不等式f(x)≤2y+ +|2x+3|,對任意的實(shí)數(shù)x,y∈R恒成立,求實(shí)數(shù)a的最小值.
【答案】
(1)解:∵不等式f(x+ )≥2m+1(m>0)的解集為(﹣∞,﹣2]∪[2,+∞),
即|2(x+ )﹣1|≤2m+1 的解集為(﹣∞,﹣2]∪[2,+∞).
由|2x|≥2m+1,可得2x≥2m+1,或2x≤﹣2m﹣1,
求得 x≥m+ ,或x≤﹣m﹣ ,
故|2(x+ )﹣1|≤2m+1 的解集為(﹣∞,﹣m﹣ ]∪[m+ ,+∞),
故有m+ =2,且﹣m﹣ =﹣2,
∴m=
(2)解:∵不等式f(x)≤2y+ +|2x+3|,對任意的實(shí)數(shù)x,y∈R恒成立,
∴|2x﹣1|≤2y+ +|2x+3|恒成立,
即|2x﹣1|﹣|2x+3|≤2y+ 恒成立,
故g(x)=|2x﹣1|﹣|2x+3|的最小值小于或等于2y+ .
∵|2x﹣1|﹣|2x+3|≤|2x﹣1﹣(2x+3)|=4,
∴4≤2y+ 恒成立,
∵2y+ ≥2 ,
∴2 ≥4,
∴a≥4,
故實(shí)數(shù)a的最小值為4
【解析】(1)求得不等式f(x+ )≥2m+1(m>0)的解集,再結(jié)合不等式f(x+ )≥2m+1(m>0)的解集為(﹣∞,﹣2]∪[2,+∞),求得m的值.(2)由題意可得g(x)=|2x﹣1|﹣|2x+3|的最小值小于或等于2y+ ,再利用絕對值三角不等式求得g(x)的最小值為4,可得4≤2y+ 恒成立,再利用基本不等式求得2y+ 的最小值為2 ,可得2 ≥4,從而求得a的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(2x+φ)(|φ|< )向左平移 個(gè)單位后是奇函數(shù),則函數(shù)f(x)在[0, ]上的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.
(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};
(2)若a是從區(qū)間[0,5]中任取的一個(gè)數(shù),b是從區(qū)間[2,4]中任取的一個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: =1(a>b>0)的焦點(diǎn)F1 , F2 , 過右焦點(diǎn)F2的直線l與C相交于P、Q兩點(diǎn),若△PQF1的周長為短軸長的2 倍.
(1)求C的離心率;
(2)設(shè)l的斜率為1,在C上是否存在一點(diǎn)M,使得 ?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動機(jī)制,且保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如下表:
交強(qiáng)險(xiǎn)浮動因素和費(fèi)率浮動比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若對于定義域內(nèi)的任意x1 , 總存在x2使得f(x2)<f(x1),則滿足條件的實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,則下列命題正確的是(寫出所有正確命題的編號).
①若ab>c2 , 則C<
②若a+b>2c,則C<
③若a3+b3=c3 , 則C<
④若(a+b)c≤2ab,則C>
⑤若(a2+b2)c2≤2a2b2 , 則C> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)調(diào)查發(fā)現(xiàn),人們長期食用含高濃度甲基汞的魚類會引起汞中毒,其中羅非魚體內(nèi)汞含量比其它魚偏高.現(xiàn)從一批數(shù)量很大的羅非魚中隨機(jī)地抽出15條作樣本,經(jīng)檢測得各條魚的汞含量的莖葉圖(以小數(shù)點(diǎn)前的數(shù)字為莖,小數(shù)點(diǎn)后一位數(shù)字為葉)如圖.《中華人民共和國環(huán)境保護(hù)法》規(guī)定食品的汞含量不得超過1.0ppm.
(Ⅰ)檢查人員從這15條魚中,隨機(jī)抽出3條,求3條中恰有1條汞含量超標(biāo)的概率;
(Ⅱ)若從這批數(shù)量很大的魚中任選3條魚,記ξ表示抽到的汞含量超標(biāo)的魚的條數(shù).以此15條魚的樣本數(shù)據(jù)來估計(jì)這批數(shù)量很大的魚的總體數(shù)據(jù),求ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com