如圖所示,在正方體ABCD-A1B1C1D1中,E為DD1上的點、F為DB的中點.
(Ⅰ)求直線B1F與平面CDD1C1所成角的正弦值;
(Ⅱ)若直線EF平面ABC1D1,試確定點E的位置.
(Ⅰ)∵平面ABB1A1平面CDD1C1
∴直線B1F與平面CDD1C1所成角等于直線FB1與平面ABB1A1所成的角(2分)
取AB中點P,連接FP和B1P
由已知可得FP⊥AB,F(xiàn)P⊥BB1,故FP⊥平面ABB1A1
∴B1F與平面ABB1A1所成的角即為∠FB1P(4分)
在Rt△FPB1中,sin∠FB1P=
FP
FB1
=
6
6

即B1F與平面CDD1C1所成角的正弦值為
6
6
.(6分)
(Ⅱ)連接BD1,則平面BDD1B1過EF與平面ABC1D1交于BD1
由EF平面ABC1D1可得EFBD1
又因為F為DB的中點
故得E也必須為DD1的中點.(12分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在P是直角梯形ABCD所在平面外一點,PA⊥平面ABCD,∠BAD=90°,ADBC,AB=BC=a,AD=2a,PD與底面成30°角,BE⊥PD于E,求直線BE與平面PAD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在線段AD上,且PG=4,AG=
1
3
GD
,BG⊥GC,BG=GC=2,E是BC的中點.
(1)求異面直線GE與PC所成角的余弦值;
(2)求DG與平面PBG所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD,PA⊥底面ABCD,ABCD,AB⊥AD,AB=AD=
1
2
CD=2,PA=2,M,E,F(xiàn)分別是PA,PC,PD的中點.
(1)證明:EF平面PAB;
(2)證明:PD⊥平面ABEF;
(3)求直線ME與平面ABEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直三棱柱ABC-A1B1C1中,AB=BC=CA=a,AA1=
2
a
,求AB1與側(cè)面AC1所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BC=1,∠BCC1=
π
3
,AB=CC1=2.
(1)求證:C1B⊥平面ABC;
(2)設E是CC1的中點,求AE和平面ABC1所成角正弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知平行六面體ABCD-A1B1C1D1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?
(3)若∠A1AB=60°,求二面角C-AA1-B的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在底面是直角梯形的四棱錐P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在五面體P-ABCD中,底面ABCD是平行四邊形,∠BAD=60°,AB=4,AD=2,PB=
15
,PD=
3

(1)求證:BD⊥平面PAD;
(2)若PD與底面ABCD成60°的角,試求二面角P-BC-A的大小.

查看答案和解析>>

同步練習冊答案