7.如圖:網(wǎng)格紙上的小正方形邊長都為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.4B.$\frac{16}{3}$C.$\frac{20}{3}$D.8

分析 由三視圖知該幾何體是一個直三棱柱切去一個三棱錐所得的組合體,由三視圖求出幾何元素的長度、判斷出線面的位置關(guān)系,由柱體、錐體的體積公式求出幾何體的體積.

解答 解:由三視圖知該幾何體是一個直三棱柱切去一個三棱錐所得的組合體,
其直觀圖如圖所示:
底面是等腰三角形,AB=BC=2棱長是4,
其中D是CG的中點,
∵BF⊥平面EFG,∴BF⊥EF,
∵EF⊥FG,BF∩FG=F,
∴EF⊥平面BFGC,
∴組合體的體積:
V=V三棱柱ABC-EFG-V三棱錐E-DFG
═$\frac{1}{2}×2×2×4-\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{20}{3}$,
故選:C.

點評 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,平面PCD⊥底面ABCD,PD⊥CD,PD=CD,E為PC的中點.
(I)求證:AC⊥PB;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,邊長為4的正方形ABED的對邊AB、ED的中點為C、F,將此正方形沿著CF折成120°的二面角,連AB、DE得一直三棱柱,則此三棱柱外接球的表面積等于(  )
A.16πB.32πC.D.64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某課題組對全班45名同學(xué)的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用莖葉圖表示45名同學(xué)的飲食指數(shù).說明:如圖中飲食指數(shù)低于70的人被認(rèn)為喜食蔬菜,飲食指數(shù)不低于70的人被認(rèn)為喜食肉類
(1)根據(jù)莖葉圖,完成下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為喜食蔬菜還是喜食肉類與性別有關(guān),說明理由:
喜食蔬菜喜食肉類合計
男同學(xué)
女同學(xué)
合計
(2)根據(jù)飲食指數(shù)在[10,39],[40,69],[70,99]進(jìn)行分層抽樣,從全班同學(xué)中抽取15名同學(xué)進(jìn)一步調(diào)查,記抽取到的喜食肉類的女同學(xué)為ξ,求ξ的分布列和數(shù)學(xué)期望Eξ
下面公式及臨界值表僅供參考:附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$

P(K2≥k)0.1000.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個幾何體的三視圖如圖所示,其中,俯視圖是半徑為2、圓心角為$\frac{π}{2}$的扇形.該幾何體的表面積是( 。
A.3π+12B.C.5π+12D.8π+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某組合體的三視圖如圖示,則該組合體的表面積為( 。
A.$(6+2\sqrt{2})π+12$B.8(π+1)C.4(2π+1)D.$(12+2\sqrt{2})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的側(cè)面積為( 。
A.(200+100$\sqrt{3}$)cm2B.(200+100π)cm2C.(200+50$\sqrt{5}$π)cm2D.(300+50π)cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.幾何體EFG-ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=1,AE=$\sqrt{2}$.
(Ⅰ)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點M使直線BM與平面BEF所成的角為45°?若存在,求$\frac{DM}{DG}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則此幾何體的體積為(  )
A.$\frac{\sqrt{3}}{6}$πB.$\frac{\sqrt{3}}{3}$πC.$\sqrt{3}$πD.π

查看答案和解析>>

同步練習(xí)冊答案