若存在x0∈N+,n∈N+,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個“生成點”.已知函數(shù)f(x)=2x+1,x∈N的“生成點”坐標滿足二次函數(shù)g(x)=ax2+bx+c,則使函數(shù)y=g(x)與x軸無交點的a的取值范圍是( 。
A、0<α<
2+
3
16
B、
2-
3
16
<α<
2+
3
16
C、α<
2+
3
8
D、0<α<
2-
3
16
或α>
2+
3
16
考點:進行簡單的合情推理
專題:函數(shù)的性質及應用
分析:根據“生成點“的定義,求出(9,2),(1,6)為函數(shù)f(x)的一個“生成點”.根據函數(shù)f(x)=2x+1,x∈N的“生成點”坐標滿足二次函數(shù)g(x)=ax2+bx+c,可求出a,b,c的關系,進而根據函數(shù)y=g(x)與x軸無交點,△<0,求出a的取值范圍.
解答: 解:∵f(x)=2x+1,x∈N,滿足:
f(9)+f(10)+f(11)=63,故(9,2)為函數(shù)f(x)的一個“生成點”.
f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)=63,故(1,6)為函數(shù)f(x)的一個“生成點”.
又∵函數(shù)f(x)=2x+1,x∈N的“生成點”坐標滿足二次函數(shù)g(x)=ax2+bx+c,
∴81a+9b+c=2,a+b+c=6,
解得:b=-
1
2
-10a,c=9a+
52
8
,
若函數(shù)y=g(x)與x軸無交點,
則△=b2-4ac=(
1
2
-10a
2-4a(9a+
52
8
)<0,
解得:
2-
3
16
<a<
2+
3
16

故選:B
點評:本題考查的知識點是合情推理,二次函數(shù)的圖象和性質,正確理解“生成點“的定義,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在原點,焦點為F(0,1),準線與y軸的交點為E.
(Ⅰ)求拋物線C的方程;
(Ⅱ)點P是拋物線C上的一個動點,拋物線在點P處的切線為l,過點P與l垂直的直線交拋物線C于另一點Q,設PE,QE的斜率分別為k1,k2,是否存在點P使得3k1+2k2=0?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sin(x+
π
4
)cos(x+
π
4
)+2cos2(x-
π
4
)-1
,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]
上的最大值和最小值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x+1|+2|x-a|,a∈R,
(1)當a=1時,解不等式f(x)>5;
(2)當a>0時,若不等式f(x)>3恒成立,求實數(shù)a的取值范圍;
(3)當a<0時,若關于x的方程2x[f(x)-1]=a在(1,+∞)上的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:2x2-y2=2,若過點P(1,2)直線l與C沒有公共點,則l斜率的取值范圍為(  )
A、(-∞,-
2
B、(-
2
,
2
C、(
2
,
3
2
D、(
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Sn=1+2
1
2
+3
1
4
+…+n
1
2n-1
,則sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
sin2x
sinx
+2sinx,求該函數(shù)的定義域和最小正周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A=45°,三邊a、b、c成等比數(shù)列,求
bsinB
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式log4(8x-2x)≤x的解集為
 

查看答案和解析>>

同步練習冊答案