已知,,

(1)當(dāng)時(shí),試比較的大小關(guān)系;

(2)猜想的大小關(guān)系,并給出證明.

時(shí),,時(shí),時(shí),,

所以猜想:時(shí),.…………………………………………………3分

證明:不等式即為

⑴當(dāng)時(shí),左邊,右邊,成立,

⑵假設(shè)當(dāng)時(shí),原不等式成立,即,

則當(dāng)時(shí),左邊,右邊

要證成立,  即證,即證

事實(shí)上,由二項(xiàng)式定理,得

,

即當(dāng)時(shí),原不等式也成立.    

由⑴⑵可得當(dāng)時(shí),不等式成立.……………………………10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知符號(hào)函數(shù)sgn x=
1 ,當(dāng)x>0時(shí)
0 ,當(dāng)x=0時(shí)
-1 ,當(dāng)x<0時(shí)
則方程x+1=(2x-1)sgnx的所有解之和是( 。
A、0
B、2
C、-
1+
17
4
D、
7-
17
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•紹興模擬)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知b=
3
a

(1)當(dāng)c=1,且△ABC的面積為
3
4
時(shí),求a
的值;
(2)當(dāng)cosC=
3
3
時(shí),求cos(B-A)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(ax)=x,g(x)=2loga(2x+t-2),其中a>0且a≠1,t∈R.
(1)求函數(shù)y=f(x)的解析式,并指出其定義域;
(2)若t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2,求實(shí)數(shù)a的值;
(3)已知0<a<1,當(dāng)x∈[1,2]時(shí),有f(x)≥g(x)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆河南省鄭州盛同學(xué)校高三上學(xué)期第一次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分16分)
定義在D上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界.
已知函數(shù)
(1)當(dāng)a=1時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界數(shù),請(qǐng)說明理由;
(2)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若,函數(shù)上的上界是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶西南師大附中高第一次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

定義在D上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱D上的有界函數(shù),其中M稱為函數(shù)的上界.

已知函數(shù);

(1)   當(dāng)a=1時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍;

(3)若,函數(shù)上的上界是,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案