(2010•眉山一模)已知函數(shù)f(x)=ax3+x2-x+1,(a>0).
(I)f(x)在(2,+∞)上是否存在單調(diào)遞增區(qū)間,證明你的結(jié)論.
(II)若f(x)在(
13
,+∞)
上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
分析:(I)先求導(dǎo)函數(shù)f′(x)=3ax2+2x-1,要使f(x)在(2,+∞)上是否存在單調(diào)遞增區(qū)間,即需要f′(x)在(2,+∞)上存在子區(qū)間使f′(x)>0,根據(jù)a>0,f′(x)=3ax2+2x-1是開(kāi)口向上的拋物線(xiàn),可證結(jié)論;
(II)令f′(x)=3ax2+2x-1=0,求得x1=
-1-
1+3a
3a
,x2=
-1+
1+3a
3a
(x1x2)
,可知f(x)在(-∞,x1)上單調(diào)遞增,在(x1,x2)上單調(diào)遞減,在(x2,+∞)上單調(diào)遞增,根據(jù)f(x)在(
1
3
,+∞)
上單調(diào)遞增,可得x2
1
3

,從而可求實(shí)數(shù)a的取值范圍.
解答:解:(I)f′(x)=3ax2+2x-1
f(x)在(2,+∞)上是否存在單調(diào)遞增區(qū)間,即f′(x)在(2,+∞)上存在子區(qū)間使f′(x)>0
∵a>0,f′(x)=3ax2+2x-1是開(kāi)口向上的拋物線(xiàn)
∴f′(x)在(2,+∞)上存在子區(qū)間使f′(x)>0
∴f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間;
(II)令f′(x)=3ax2+2x-1=0,∴x1=
-1-
1+3a
3a
x2=
-1+
1+3a
3a
(x1x2)

∵a>0,∴f(x)在x1處取極大值,在x2處取極小值,
∴f(x)在(-∞,x1)上單調(diào)遞增,在(x1,x2)上單調(diào)遞減,在(x2,+∞)上單調(diào)遞增
∵f(x)在(
1
3
,+∞)
上單調(diào)遞增,∴x2
1
3

-1+
1+3a
3a
≤ 
1
3

1+3a
≤a+1

∴a2-a≥0
∵a>0,∴a≥1
∴實(shí)數(shù)a的取值范圍是a≥1
點(diǎn)評(píng):本題以函數(shù)為載體,考查函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的運(yùn)用,確定函數(shù)的單調(diào)性,建立不等式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•眉山一模)“x≥3”是“x>2”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•眉山一模)集合{x∈z|0<|x|<3}的真子集的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•眉山一模)若函數(shù)y=f(x)的值域是[
1
2
,3]
,則函數(shù)F(x)=f(x)-
1
f(x)
的值域是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•眉山一模)若半徑為1的球面上兩點(diǎn)A、B間的球面距離為
π
2
,則球心到過(guò)A、B兩點(diǎn)的平面的距離最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•眉山一模)設(shè)f(x)=e2x-2x,則
lim
x→0
f′(x)
ex-1
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案