已知函數(shù)f(x)=lnx-
1
2
ax2-bx,若x=1是函數(shù)f(x)的極大值點(diǎn),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:f(x)的定義域?yàn)椋?,+∞),f'(x)=
1
x
-ax-b,由f'(1)=0,得b=1-a.所以f'(x)=
-(ax+1)(x-1)
x
,由此能求出a的取值范圍.
解答: 解:f(x)的定義域?yàn)椋?,+∞),f'(x)=
1
x
-ax-b,由f'(1)=0,得b=1-a.
所以f'(x)=
-(ax+1)(x-1)
x

①若a≥0,由f'(x)=0,得x=1.
當(dāng)0<x<1時(shí),f'(x)>0,此時(shí)f(x)單調(diào)遞增;
當(dāng)x>1時(shí),f'(x)<0,此時(shí)f(x)單調(diào)遞減.
所以x=1是f(x)的極大值點(diǎn).
②若a<0,由f'(x)=0,得x=1,或x=-
1
a

因?yàn)閤=1是f(x)的極大值點(diǎn),所以-
1
a
>1,解得-1<a<0.
綜合①②:a的取值范圍是a>-1.
故答案為:a>-1.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性、極值等知識(shí)點(diǎn)的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(ax2+x)•ex,其中e是自然數(shù)的底數(shù),a∈R,
(1)當(dāng)a<0時(shí),解不等式f(x)>0;
(2)當(dāng)a=0時(shí),試判斷:是否存在整數(shù)k,使得方程f(x)=(x+1)•ex+x-2在[k,k+1]上有解?若存在,請(qǐng)寫出所有可能的k的值;若不存在,說明理由;
(3)若當(dāng)x∈[-1,1]時(shí),不等式f(x)+(2ax+1)•ex≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,請(qǐng)證明Sn,S2n-Sn,S3n-S2n(n∈N+)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=x,b=2,B=60°,若這樣的三角形有2個(gè),則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-4x+8
x-2
的極大值點(diǎn)與極小值點(diǎn)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與雙曲線
x2
9
-
y2
7
=-1有相同焦點(diǎn),且離心率為0.8的橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(2,1)在圓C:x2+y2+ax-2y+b=0上,點(diǎn)P關(guān)于直線x+y-1=0的對(duì)稱點(diǎn)也在圓C上,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的可導(dǎo)函數(shù)f(x)滿足f(1+x)=f(1-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0.設(shè)a=f(0),b=f(
1
2
),c=f(3),則( 。
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

同步練習(xí)冊(cè)答案