已知空間四點A、B、C、D共面,若對空間中任一點O有x
OA
+y
OB
+z
OC
+
OD
=
0
,則x+y+z=
 
考點:共線向量與共面向量
專題:空間向量及應用
分析:利用共面向量基本定理即可得出.
解答: 解:∵空間四點A、B、C、D共面,對空間中任一點O有x
OA
+y
OB
+z
OC
+
OD
=
0
,
∴x+y+z=-1.
故答案為:-1.
點評:本題考查了共面向量基本定理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若f(x)=
-x,x≤0
x2-2x,x>0
,則f(x)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=
1
4
,tanβ=
3
5
,α,β為銳角,求證:α+β=
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-1|+|2-x|.
(Ⅰ)解不等式f(x)>2
(Ⅱ)若f(x)≥|a-1|恒成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙C:x2+y2-2x+4y-4=0,直線l:y=x+b,若直線l與圓C相切,求實數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線(m-1)x+(2m+3)y-(m-2)=0恒過定點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列五個命題:
①直線l的斜率k∈[-1,1],則直線l的傾斜角的范圍是α∈[-
π
4
π
4
]
;
②過點A(5,2)在兩坐標軸上的截距相等直線l的方程是x+y-7=0;
③如果實數(shù)x,y滿足方程(x-2)2+y2=1,那么
y
x
的最大值為
3
3

④方程x2+y2+4mx-2y+5m=0表示圓的充要條件是m<
1
4
或m>1;
正確的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設tan(α+
7
)=a,求
sin(
15
7
π+α)+3cos(α-
13
7
π)
sin(
20π
7
-a)-cos(α+
22π
7
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=-2,拋物線y2=2px(p>0)的焦點為F(-sinαcosα,0),直線l經(jīng)過點F且與拋物線交于A、B點,且|AB|=4,則線段AB的中點到直線x=-
1
2
的距離為
 

查看答案和解析>>

同步練習冊答案