如圖,已知平面,,
的中點,.
(1)求證:平面;
(2)求證:平面平面
(3)求此多面體的體積.
(1)詳見解析;(2)詳見解析;(3).

試題分析:(1)取的中點,連結(jié),利用中位線證明,利用題中條件得到,進而得到,于是說明四邊形為平行四邊形,得到,最后利用直線與平面平行的判定定理證明平面;(2)由平面 得到,再利用等腰三角形三線合一得到,利用直線與平面垂直的判定定理證明平面,結(jié)合(1)中的結(jié)論證明平面,最后利用平面與平面垂直的判定定理證明平面平面;(3)利用已知條件得到平面平面,然后利用平面與平面垂直的性質(zhì)定理求出椎體的高,最后利用椎體的體積公式計算該幾何體的體積.
(1)取中點,連結(jié)、,的中點, ,且,
,且 ,且
為平行四邊形,
平面,平面,平面
(2),所以為正三角形,,
平面,平面,又平面,
,又,,
平面,又平面,
平面,平面平面
(3)此多面體是一個以為定點,以四邊形為底邊的四棱錐,
,平面平面,
等邊三角形邊上的高就是四棱錐的高,
.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

某三棱錐的三視圖如圖所示,該三棱錐的體積為(  )
A.80B.40C.
80
3
D.
40
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知空間4個球,它們的半徑分別為2, 2, 3, 3,每個球都與其他三個球外切,另有一個小球與這4個球都外切,則這個小球的半徑為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

三棱錐中,,分別為,的中點,記三棱錐的體積為,的體積為,則________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方形的邊長為2,點、分別在邊、上,且,將此正
方形沿、折起,使點、重合于點,則三棱錐的體積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(5分)(2011•湖北)設球的體積為V1,它的內(nèi)接正方體的體積為V2,下列說法中最合適的是(          )
A.V1比V2大約多一半B.V1比V2大約多兩倍半
C.V1比V2大約多一倍D.V1比V2大約多一倍半

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正△ABC的邊長為, CD是AB邊上的高,E、F分別是AC和BC邊的中點,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖所示.                    
(1)試判斷折疊后直線AB與平面DEF的位置關系,并說明理由;
(2)若棱錐E-DFC的體積為,求的值;
(3)在線段AC上是否存在一點P,使BP⊥DF?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個圓錐的母線長為4,中截面面積為π,則圓錐的全面積為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

側(cè)棱長為2的正三棱錐,若其底面周長為9,則此幾何體的體積為(   )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案