11.已知全集為R,集合M={-1,0,1,3},N={x|x2-x-2≥0},則M∩∁RN=(  )
A.{-1,0,1,3}B.{0,1,3}C.{-1,0,1}D.{0,1}

分析 先求出N,從而得到CRN,由此能求出M∩∁RN.

解答 解:∵全集為R,集合M={-1,0,1,3},
N={x|x2-x-2≥0}={x|x≤-1或x≥2},
∴CRN={x|-1<x<2},
∴M∩∁RN={0,1}.
故選:D.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意補(bǔ)集、交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

選修4-1:幾何證明選講

如圖,已知為圓的直徑,是圓上的兩個(gè)點(diǎn),是劣弧的中點(diǎn),,,交

(1)求證:

(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,∠A的角平分線交BC于點(diǎn)D,且AD=1,邊BC上的高AH=$\frac{1}{2}$,△ABD的面積是△ACD的面積的2倍,則BC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,輸出的S=(  )
A.4B.$-\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若x、y滿足$\left\{\begin{array}{l}y≥\frac{1}{2}x\\ y≤2x\\ x+4y≤9\end{array}\right.$,且z=x-ay的最大值為4,則實(shí)數(shù)a的值為$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.等差數(shù)列中{an},a1=2,公差為d,則“d=4”是“a1,a2,a5成等比數(shù)列”的( 。
A.充要條件B.充分非必要條件
C.必要非充分條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a>b>0,c<0,下列不等關(guān)系中正確的是(  )
A.ac>bcB.ac>bcC.loga(a-c)>logb(b-c)D.$\frac{a}{a-c}$>$\frac{b-c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,角C=60°,且tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,則sin$\frac{A}{2}$•sin$\frac{B}{2}$=$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.關(guān)于x,y的二元一次方程的增廣矩陣為$(\begin{array}{l}{3}&{2}&{1}\\{1}&{1}&{m}\end{array})$.若Dx=5,則實(shí)數(shù)m=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案