已知的三個(gè)頂點(diǎn)(4,0),(8,10),(0,6).
(Ⅰ)求過A點(diǎn)且平行于的直線方程;
(Ⅱ)求過點(diǎn)且與點(diǎn)距離相等的直線方程。
(Ⅰ)(Ⅱ)或
解析試題分析:(Ⅰ)因?yàn)樗笾本平行于,所以由直線的斜率得所求直線的斜率,再由點(diǎn)斜式寫出所求直線方程,兩點(diǎn)斜率公式為(Ⅱ)先根據(jù)點(diǎn)到直線距離公式得到一個(gè)含絕對(duì)值的等式,再根據(jù)絕對(duì)值的定義去絕對(duì)值解出直線斜率. 利用點(diǎn)到直線距離公式時(shí),需先將直線方程寫出一般式. 點(diǎn)到直線距離公式為
試題解析:(Ⅰ) 過A點(diǎn)且平行于BC的直線為即 6分
(Ⅱ)設(shè)過B點(diǎn)的直線方程為即 8分
由即或 10分
所求的直線方程為或即
或 12分
考點(diǎn):直線點(diǎn)斜式方程,點(diǎn)到直線距離,直線斜率公式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:kx-y+1+2k=0.
(1)求證:直線l過定點(diǎn);
(2)若直線l交x軸負(fù)半軸于點(diǎn)A,交y正半軸于點(diǎn)B,△AOB的面積為S,試求S的最小值并求出此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面內(nèi)兩點(diǎn).
(1)求的中垂線方程;
(2)求過點(diǎn)且與直線平行的直線的方程;
(3)一束光線從點(diǎn)射向(2)中的直線,若反射光線過點(diǎn),求反射光線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線:,(不同時(shí)為0),:,
(1)若且,求實(shí)數(shù)的值;
(2)當(dāng)且時(shí),求直線與之間的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求經(jīng)過直線的交點(diǎn)M,且滿足下列條件的直線方程:
(1)與直線2x+3y+5=0平行; (2)與直線2x+3y+5=0垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•重慶)如圖,橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,離心率,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),|AA′|=4.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取垂直于x軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.若PQ⊥P'Q,求圓Q的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com