【題目】如圖,已知橢圓,過點,離心率為,左、右焦點分別為、.點為直線上且不在軸上的任意一點,直線和與橢圓的交點分別為、和、,為坐標原點.
()求橢圓的標準方程;
()設直線、斜率分別為、.
①證明:;
②問直線上是否存在一點,使直線、、、的斜率、、、滿足?若存在,求出所有滿足條件的點的坐標;若不存在,說明理由.
【答案】(1);(2)①證明見解析,②.
【解析】
試題分析:(1)利用橢圓過已知點和離心率結合性質(zhì),列出關于 、 、的方程組,求得和,則橢圓的方程可得;(2)①把直線的方程聯(lián)立求得交點的坐標的表達式,代入直線上,整理求得,原式得證;②設出的坐標,聯(lián)立直線和橢圓的方程根據(jù)韋達定理表示出和,進而可求得直線、斜率的和與、斜率的和,由,推斷出或分別討論可求得點的坐標.
試題解析:()因為橢圓過點,,
所以,.
又,所以,,,
故橢圓方程為.
()①設,則,,
因為點不在軸上,所以.
又,
所以.
②設,,,,
聯(lián)立直線與橢圓方程得,
化簡得,
因此,,
由于、斜率存在,
所以,,因此,,
因此.
類似可以得到
,,,,,
故.
若,必須有或.
當時,結合①的結論,可得,
所以解得點坐標為.
當時,結合①的結論,可得或(舍去),
此時直線的方程為,聯(lián)立方程得,.
因此點坐標為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是甲、乙兩名運動員某賽季一些場次得分的莖葉圖,據(jù)圖可知以下說法正確的是 _____.(填序號)
①甲運動員的成績好于乙運動員;②乙運動員的成績好于甲運動員;
③甲、乙兩名運動員的成績沒有明顯的差異;④甲運動員的最低得分為0分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD平面PAB
(1)求證:AB平面PCB
(2)求異面直線AP與BC所成角的大小
(3)求二面角C-PA-B 的大小的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形OABP是平行四邊形,過點P的直線與射線OA,OB分別相交于點M,N,若 , .
(1)把y用x表示出來(即求y=f(x)的解析式);
(2)設數(shù)列{an}的首項a1=1,前n項和Sn滿足Sn=f(Sn﹣1)(n≥2且n∈N*),求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴重影響了人們的生活.—媒體為調(diào)查市民對低頭族的認識,從某社區(qū)的500名市民中隨機抽取名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如圖:
(1)求出表中的值,并補全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定在第2,4,5組中用分層抽樣的方法抽取6名市民進行問卷調(diào)查, 再從這6名市民中隨機抽取2名接受電視采訪,求第2組至少有一名接受電視采訪的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某海域的東西方向上分別有A,B兩個觀測點(如圖),它們相距海里.現(xiàn)有一艘輪船在D點發(fā)出求救信號,經(jīng)探測得知D點位于A點北偏東45°,B點北偏西60°,這時,位于B點南偏西60°且與B點相距海里的C點有一救援船,其航行速度為30海里/小時.
(1)求B點到D點的距離BD;
(2)若命令C處的救援船立即前往D點營救,求該救援船到達D點需要的時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.
(Ⅰ)求{an}的通項公式an與前n項和公式Sn;
(Ⅱ)令bn= (k<0),若{bn}是等差數(shù)列,求數(shù)列{}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設甲、乙、丙三個乒乓球協(xié)會的運動員人數(shù)分別為27,9,18,先采用分層抽樣的方法從這三個協(xié)會中抽取6名運動員參加比賽.
(I)求應從這三個協(xié)會中分別抽取的運動員人數(shù);
(II)將抽取的6名運動員進行編號,編號分別為,從這6名運動員中隨機抽取2名參加雙打比賽.
(i)用所給編號列出所有可能的結果;
(ii)設A為事件“編號為的兩名運動員至少有一人被抽到”,求事件A發(fā)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com