【題目】設(shè),,是橢圓的左,右焦點(diǎn),直線與橢圓相交于,兩點(diǎn)

1)若線段的中點(diǎn)為,求直線的方程;

2)若直線過(guò)橢圓的左焦點(diǎn),,求的面積.

【答案】1;(2

【解析】

1)點(diǎn)A、B的坐標(biāo)代入橢圓方程,兩式相減得到等式①,利用中點(diǎn)坐標(biāo)可得代入①式可化簡(jiǎn)求出直線的斜率k,即可求出直線的點(diǎn)斜式方程,化簡(jiǎn)即可;

2)設(shè)直線l的方程為,與橢圓方程聯(lián)立得關(guān)于y的一元二次方程,韋達(dá)定理求出、,由,列出等式化簡(jiǎn)得,求出點(diǎn)到直線AB的距離及,代入即可求得的面積.

1)由橢圓的對(duì)稱性知直線的斜率存在,設(shè),

因?yàn)?/span>A、B在橢圓上,所以,

兩式相減可得①,

因?yàn)?/span>為線段AB的中點(diǎn),所以,

代入①式可得,即,

因?yàn)辄c(diǎn)在直線,直線l的方程為,

;

2)橢圓的右焦點(diǎn),設(shè)直線l的方程為,

聯(lián)立,,

所以,

因?yàn)?/span>,所以,即,

,所以,,

點(diǎn)到直線AB的距離為

,

所以的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成面積為的等腰直角三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線與橢圓相交于,兩點(diǎn),試問(wèn):在軸上是否存在點(diǎn),使得為等邊三角形,若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)了一批零件,從中隨機(jī)抽取100個(gè)作為樣本,測(cè)出它們的長(zhǎng)度(單位:厘米),按數(shù)據(jù)分成,,,,5組,得到如圖所示的頻率分布直方圖.以這100個(gè)零件的長(zhǎng)度在各組的頻率代替整批零件長(zhǎng)度在該組的概率.

1)估計(jì)該工廠生產(chǎn)的這批零件長(zhǎng)度的平均值(同一組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);

2)若用分層抽樣的方式從第1組和第5組中抽取5個(gè)零件,再?gòu)倪@5個(gè)零件中隨機(jī)抽取2個(gè),求抽取的零件中恰有1個(gè)是第1組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為4,點(diǎn), 分別為, 的中點(diǎn),將, ,分別沿, 折起,使, 兩點(diǎn)重合于點(diǎn),連接.

(1)求證: 平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)設(shè)直線與圓相交于,兩點(diǎn),求圓,處兩條切線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上頂點(diǎn)為,左,右焦點(diǎn)分別為,,的面積為,直線的斜率為.為坐標(biāo)原點(diǎn).

1)求橢圓的方程;

2)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈爾濱市第三中學(xué)校響應(yīng)教育部門疫情期間停課不停學(xué)的號(hào)召,實(shí)施網(wǎng)絡(luò)授課,為檢驗(yàn)學(xué)生上網(wǎng)課的效果,高三學(xué)年進(jìn)行了一次網(wǎng)絡(luò)模擬考試.全學(xué)年共1500人,現(xiàn)從中抽取了100人的數(shù)學(xué)成績(jī),繪制成頻率分布直方圖(如下圖所示).已知這100人中分?jǐn)?shù)段的人數(shù)比分?jǐn)?shù)段的人數(shù)多6.

1)根據(jù)頻率分布直方圖,求a,b的值,并估計(jì)抽取的100名同學(xué)數(shù)學(xué)成績(jī)的中位數(shù);

2)現(xiàn)用分層抽樣的方法從分?jǐn)?shù)在,的兩組同學(xué)中隨機(jī)抽取6名同學(xué),從這6名同學(xué)中再任選2名同學(xué)作為網(wǎng)絡(luò)課堂學(xué)習(xí)優(yōu)秀代表發(fā)言,求這2名同學(xué)的分?jǐn)?shù)不在同一組內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

大學(xué)生是國(guó)家的未來(lái),代表著國(guó)家可持續(xù)發(fā)展的實(shí)力,能夠促進(jìn)國(guó)家綜合實(shí)力的提高.據(jù)統(tǒng)計(jì),2016年至2020年我國(guó)高校畢業(yè)生人數(shù)y(單位:萬(wàn)人)的數(shù)據(jù)如下表:

年份

2016

2017

2018

2019

2020

年份代號(hào)x

16

17

18

19

20

高校畢業(yè)生人數(shù)y(單位:萬(wàn)人)

765

795

820

834

874

1)根據(jù)上表數(shù)據(jù),計(jì)算yx的相關(guān)系數(shù)r,并說(shuō)明yx的線性相關(guān)性的強(qiáng)弱.

(已知:,則認(rèn)為yx線性相關(guān)性很強(qiáng);,則認(rèn)為yx線性相關(guān)性一般;,則認(rèn)為yx線性相關(guān)性較弱)

2)求y關(guān)于x的線性回歸方程,并預(yù)測(cè)2022年我國(guó)高校畢業(yè)生的人數(shù)(結(jié)果取整數(shù)).

參考公式和數(shù)據(jù):,,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下:

超過(guò)1小時(shí)

不超過(guò)1小時(shí)

20

8

12

m

1)求m,n

2)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過(guò)1小時(shí)與性別有關(guān)?

3)從該校學(xué)生中隨機(jī)調(diào)查60名學(xué)生,一周參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的人數(shù)記為X,以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的頻率作為該事件發(fā)生的概率,求X的分布列和數(shù)學(xué)期望.

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2.

查看答案和解析>>

同步練習(xí)冊(cè)答案