已知函數(shù)f(x)=
-x(-1≤x<0)
x2(0≤x<1)
x(1≤x≤2)

(1)求f(-
2
3
),f(
3
2
)

(2)做出函數(shù)的簡圖.
(3)求函數(shù)的值域.
分析:(1)根據(jù)函數(shù)分段的表達(dá)式,分別將x=-
2
3
和x=
3
2
代入函數(shù)的第1表達(dá)式和第3表達(dá)式,即可得到f(-
2
3
)和f(
3
2
)
的值;
(2)根據(jù)函數(shù)的定義域和各范圍內(nèi)的表達(dá)式,結(jié)合一次函數(shù)、二次函數(shù)的圖象作法,可得函數(shù)f(x)如圖所示的簡圖;
(3)由(2)所作出的函數(shù)圖象,結(jié)合一次函數(shù)和二次函數(shù)的性質(zhì),即可得到函數(shù)f(x)的最大、最小值,由此即可得到函數(shù)f(x)的值域.
解答:解:(1)∵-1≤-
2
3
<0,∴f(-
2
3
)=-(-
2
3
)=
2
3

∵1≤
3
2
≤2,∴f(
3
2
)
=
3
2

即f(-
2
3
)=
2
3
且f(
3
2
)
=
3
2

(2)當(dāng)-1≤x<0時,f(x)=-x,可得圖象是以A(-1,1)和原點(diǎn)為端點(diǎn)的線段;
當(dāng)0≤x<1時,f(x)=x2,可得圖象是拋物線y=x2位原點(diǎn)與B(1,1)之間的;
當(dāng)1≤x≤2時,f(x)=x,可得圖象是以B(1,1)和C(2,2)為端點(diǎn)的線段
因此,可作出函數(shù)y=f(x)的簡圖,如右圖所示;
(3)根據(jù)一次函數(shù)和二次函數(shù)的單調(diào)性,結(jié)合作出(2)的圖象,
可得函數(shù)f(x)的最小值為f(0)=0,最大值為f(2)=2
因此,函數(shù)f(x)的值域是[0,2]
點(diǎn)評:本題給出分段函數(shù),求特殊的函數(shù)值并作函數(shù)的簡圖,著重考查了分段函數(shù)的含義,以及一次、二次函數(shù)的圖象與性質(zhì)和函數(shù)值域的求法等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案