(06年江西卷理)對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)³0,則必有(   )

A.  f(0)+f(2)<2f(1)  B. f(0)+f(2)£2f(1)

C.  f(0)+f(2)³2f(1)  D. f(0)+f(2)>2f(1)

答案:C

解析:依題意,當(dāng)x³1時(shí),f¢(x)³0,函數(shù)f(x)在(1,+¥)上是增函數(shù);當(dāng)x<1時(shí),f¢(x)£0,f(x)在(-¥,1)上是減函數(shù),故f(x)當(dāng)x=1時(shí)取得最小值,即有

f(0)³f(1),f(2)³f(1),故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年江西卷理)已知圓M:(x+cosq)2+(y-sinq)2=1,

直線l:y=kx,下面四個(gè)命題:

(A)對(duì)任意實(shí)數(shù)k與q,直線l和圓M相切;

(B)對(duì)任意實(shí)數(shù)k與q,直線l和圓M有公共點(diǎn);

(C)對(duì)任意實(shí)數(shù)q,必存在實(shí)數(shù)k,使得直線l與

和圓M相切

(D)對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)q,使得直線l與

和圓M相切

其中真命題的代號(hào)是______________(寫出所有真命題的代號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年江西卷理)(12分)

已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時(shí)都取得極值

(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間

(2)若對(duì)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案