已知二階矩陣M有特征值λ=8及對應(yīng)的一個特征向量
e1
=[
 
1
1
],并且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成(-2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值.
分析:(1)先設(shè)矩陣A=
ab
cd
,這里a,b,c,d∈R,由二階矩陣M有特征值λ=8及對應(yīng)的一個特征向量e1及矩陣M對應(yīng)的變換將點(diǎn)(-1,2)換成(-2,4).得到關(guān)于a,b,c,d的方程組,即可求得矩陣M;
(2)由(1)知,矩陣M的特征多項(xiàng)式為f(λ)=(λ-6)(λ-4)-8=λ2-10λ+16,從而求得另一個特征值為2.
解答:解:(1)設(shè)矩陣A=
ab
cd
,這里a,b,c,d∈R,
ab
cd
 
1 
1 
=8
1 
1 
=
8 
8 
,
a+b=8
c+d=8
,
由于矩陣M對應(yīng)的變換將點(diǎn)(-1,2)換成(-2,4).
ab
cd
 
-1 
 2 
=
-2 
 4 
,
-a+2b=-2
-c+2d=4

聯(lián)立以上兩方程組解得a=6,b=2,c=4,d=4,故M=
62
44

(2)由(1)知,矩陣M的特征多項(xiàng)式為f(λ)=(λ-6)(λ-4)-8=λ2-10λ+16,
故矩陣M的另一個特征值為2.
點(diǎn)評:本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量
e1
=
1
1
,并且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過點(diǎn)M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數(shù))相交于A、B兩點(diǎn),試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實(shí)數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知某圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程.
(2)已知二階矩陣M有特征值λ=8及對應(yīng)的一個特征向量e1=
.
1
1
.
,且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成
(-2,4).求矩陣M的另一個特征值及對應(yīng)的一個特征向量e2的坐標(biāo)之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=
1
1
,并且M對應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量
e1
=
1
1
,并且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.

查看答案和解析>>

同步練習(xí)冊答案