解法一:設(shè)M(x,y)為所求軌跡上任一點, ∵M為AB中點, ∴A(2x,0),B(0,2y), ∵l1⊥l2且l1,l2過點P(2,4), ∴PA⊥PB ∴kPA·kPB=-1 ∵kPA=(x≠1) kPB= ∴· =-1 即:x+2y-5=0(x≠1) 當(dāng)x=1時,A(2,0)、B(0,4),此時AB中點M的坐標(biāo)為(1,2),它也滿足方程x+2y-5=0 ∴所求點M的軌跡方程為x+2y-5=0。 解法二:連結(jié)PM。 設(shè)M(x,y), 則A(2x,0),B(0,2y) ∵l1⊥l2,∴△PAB為直角三角形 ∴|PM|=|AB| 即 化簡:x+2y-5=0 ∴所求點M的軌跡方程為x+2y-5=0。 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com