【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 為的垂心.
(1)求證:平面平面;
(2)若,點(diǎn)在線段上,且,求三棱錐的體積.
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:(1)延長(zhǎng)交于點(diǎn),先證明,再證明平面,即平面;(2)由(1)知平面,所以就是點(diǎn)到平面的距離,再證明,從而利用棱錐的體積公式可得結(jié)果.
試題解析:(1)如圖,延長(zhǎng)交于點(diǎn).
因?yàn)?/span>為的重心,所以為的中點(diǎn).
因?yàn)?/span>為的中點(diǎn),所以.
因?yàn)?/span>是圓的直徑,所以,所以.
因?yàn)?/span>平面, 平面,所以.
又平面, 平面, ,
所以平面,即平面.
又平面,所以平面平面.
(2)解:由(1)知平面,
所以就是點(diǎn)到平面的距離.
由已知可得, ,
所以為正三角形,
所以.又點(diǎn)為的重心,
所以.
故點(diǎn)到平面的距離為.
所以 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(1﹣ ).
(1)若a=1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0,對(duì)任意的x≥1均成立,求實(shí)數(shù)a的取值范圍;
(3)求證:( )1008> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知映射f:A→B,其中A=B=R,對(duì)應(yīng)法則f:x→y=( ) ,若對(duì)實(shí)數(shù)m∈B,在集合A中存在元素與之對(duì)應(yīng),則m的取值范圍是( )
A.(﹣∞,2]
B.[2,+∞)
C.(2,+∞)
D.(0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),數(shù)列的前項(xiàng)和為,點(diǎn)在圖象上,且的最小值為.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿(mǎn)足,記數(shù)列的前項(xiàng)和為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十八屆五中全會(huì)公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本國(guó)策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對(duì)夫婦可生育兩個(gè)孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務(wù)水平.為了解適齡公務(wù)員對(duì)放開(kāi)生育二胎政策的態(tài)度,某部門(mén)隨機(jī)調(diào)查了100位30到40歲的公務(wù)員,得到情況如下表:
男公務(wù)員 | 女公務(wù)員 | |
生二胎 | 40 | 20 |
不生二胎 | 20 | 20 |
(1)是否有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說(shuō)明理由;
(2)把以上頻率當(dāng)概率,若從社會(huì)上隨機(jī)抽取3位30到40歲的男公務(wù)員,記其中生二胎的人數(shù)為X,求隨機(jī)變量X的分布列,數(shù)學(xué)期望.
附:K2=
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1 , y1),P2(x2 , y2)間的“L﹣距離”定義為|P1P2|=|x1﹣x2|+|y1﹣y2|.現(xiàn)將邊長(zhǎng)為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的斜率為k,0≤k≤ .求:當(dāng)|BC|取最大值時(shí),邊AB所在直線的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的上下兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)與軸垂直的直線交橢圓于兩點(diǎn), 的面積為,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知為坐標(biāo)原點(diǎn),直線與軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= ﹣lg(x﹣1)的定義域是( )
A.[2,+∞)
B.(﹣∞,2)
C.(1,2]
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本公司計(jì)劃2008年在甲,乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300分鐘的廣告,廣告總費(fèi)用不超過(guò)9萬(wàn)元,甲,乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,規(guī)定甲,乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告,能給公司事來(lái)的收益分別為0.3萬(wàn)元和0.2萬(wàn)元,問(wèn)該公司如何分配在甲,乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com