橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,離心率e = ,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為1-e, 直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且

(1)求橢圓方程;

(2)若,求m的取值范圍.

(1)(C的方程為:y2+=1

(2)m的取值范圍為(-1,-)∪(,1)


解析:

(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2a2b2,由條件知a-c=,=,

a=1,bc=,

C的方程為:y2+=1      ………………………………………4分

(2)由=λ得-=λ(-),(1+λ)=+λ,

λ+1=4,λ=3             ………………………………………………6分

設(shè)l與橢圓C交點(diǎn)為Ax1,y1),Bx2,y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

x1x2=, x1x2=   ………………………………………………9分

∵=3 ∴-x1=3x2

消去x2,得3(x1x22+4x1x2=0,∴3()2+4=0

整理得4k2m2+2m2k2-2=0   ………………………………………………11分

m2=時(shí),上式不成立;m2≠時(shí),k2=,

λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易驗(yàn)證k2>2m2-2成立,所以(*)成立

即所求m的取值范圍為(-1,-)∪(,1)     ………………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心為坐標(biāo)原點(diǎn)O,一個(gè)長(zhǎng)軸端點(diǎn)為(0,1),短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,若直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于不同的兩點(diǎn)A、B,且
AP
=3
PB

(Ⅰ)求橢圓C的離心率及其標(biāo)準(zhǔn)方程;
(Ⅱ)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,離心率e=
2
2
,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為1-
2
2
,直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且
AP
PB

(1)求橢圓方程;
(2)若
OA
OB
=4
OP
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,短軸長(zhǎng)為
2
、離心率為
2
2
,直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且
AP
=3
PB

(I)求橢圓方程;
(II)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,離心率e=
2
2
,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為1-e,直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且
AP
PB

(1)求橢圓C的方程;
(2)若
OA
OB
=4
OP
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心為坐標(biāo)原點(diǎn)O,一個(gè)長(zhǎng)軸端點(diǎn)為(0,2),短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且
AP
=2
PB

(Ⅰ)求橢圓方程;
(Ⅱ)求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案