若log4(3a+4b)=log2
ab
,則a+b的最小值是( 。
A、6+2
3
B、7+2
3
C、6+4
3
D、7+4
3
考點(diǎn):基本不等式,對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對(duì)數(shù)的運(yùn)算法則可得b=
3a
a-4
>0,a>4,再利用基本不等式即可得出
解答: 解:∵3a+4b>0,ab>0,
∴a>0.b>0
∵log4(3a+4b)=log2
ab
,
∴l(xiāng)og4(3a+4b)=log4(ab)
∴3a+4b=ab,a≠4,a>0.b>0
b=
3a
a-4
>0,
∴a>4,
則a+b=a+
3a
a-4
=a+
3(a-4)+12
a-4
=a+3+
12
a-4
=(a-4)+
12
a-4
+7≥2
(a-4)•
12
a-4
+7=4
3
+7,當(dāng)且僅當(dāng)a=4+2
3
取等號(hào).
故選:D.
點(diǎn)評(píng):本題考查了對(duì)數(shù)的運(yùn)算法則、基本不等式的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
ex-1  ,x<1
x
1
3
  , x≥1
,則使得f(x)≤2成立的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在同一直角坐標(biāo)系中,函數(shù)f(x)=xa(x≥0),g(x)=logax的圖象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè),
OA
OB
=2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是( 。
A、2
B、3
C、
17
2
8
D、
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若3a=2b,則
2sin2B-sin2A
sin2A
的值為( 。
A、-
1
9
B、
1
3
C、1
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x+y≥1
x-2y≤4
的解集記為D,有下列四個(gè)命題:
p1:?(x,y)∈D,x+2y≥-2          p2:?(x,y)∈D,x+2y≥2
p3:?(x,y)∈D,x+2y≤3           p4:?(x,y)∈D,x+2y≤-1
其中真命題是( 。
A、p2,p3
B、p1,p4
C、p1,p2
D、p1,p3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“設(shè)a,b為實(shí)數(shù),則方程x3+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是( 。
A、方程x3+ax+b=0沒(méi)有實(shí)根
B、方程x3+ax+b=0至多有一個(gè)實(shí)根
C、方程x3+ax+b=0至多有兩個(gè)實(shí)根
D、方程x3+ax+b=0恰好有兩個(gè)實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖的程序框圖,若輸入的a,b,k分別為1,2,3,則輸出的M=( 。
A、
20
3
B、
7
2
C、
16
5
D、
15
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角為A、B、C所對(duì)邊的長(zhǎng)分別是a、b、c,且b=3,c=1,A=2B.
(Ⅰ)求a的值;
(Ⅱ)求sin(A+
π
4
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案