已知向量
a
b
滿足
a
b
,|
a
+
b
|=t|
a
|,若
a
+
b
a
-
b
的夾角為
3
,則t的值為
 
考點:數(shù)量積表示兩個向量的夾角
專題:平面向量及應(yīng)用
分析:由題意可得|
a
+
b
|=|
a
-
b
|=t|
a
|,利用兩個向量的夾角公式求得|
b
|=
2+t2
2
|
a
|,再利用勾股定理求得t的值.
解答: 解:由題意可得|
a
+
b
|=|
a
-
b
|=t|
a
|,
cos
3
=-
1
2
=
(
a
+
b
)•(
a
-
b
)
|
a
+
b
|•|
a
-
b
|
=
a
2
-
b
2
t2
a
2
,
化簡可得2
b
2
=(2+t2
a
2
,∴|
b
|=
2+t2
2
|
a
|.
再根據(jù)|
a
|
2
+|
b
|
2
=(t|
a
|)
2
,t>0,求得t=2,
故答案為:2.
點評:本題主要考查兩個向量的加減法的法則,以及其幾何意義,兩個向量的數(shù)量積的運算,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在南沙群島上,A島與B島相距8海里,一艘軍艦在海上巡邏,巡邏過程中,從軍艦上看A、B兩島視角為直角,試寫出軍艦巡邏路線的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=-x2+3上存在關(guān)于直線y=x對稱的相異兩點A,B,則|AB|等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2+mx-2m-3
(1)若函數(shù)在區(qū)間(-∞,0)與(1,+∞)內(nèi)各有一個零點,求實數(shù)m的取值范圍;
(2)若不等式f(x)≥(3m+1)x-3m-11在x∈(
1
2
,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}為公差為2的等差數(shù)列,記{an}的前n項和為Sn,令bn=Sn+an,若{bn}為遞增數(shù)列,則a1的取值范圍是( 。
A、(-4,+∞)
B、(-3,+∞)
C、(-2,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,d=2,an=11,Sn=35,n∈N+,求a1和n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),g(x)滿足f(5)=5,f′(5)=3,g(5)=4,g′(5)=1,則函數(shù)y=
f(x)+2
g(x)
的圖象在x=5處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B是銳角三角形的兩個內(nèi)角,則直線xsinA-ycosB=0的傾斜角( 。
A、大于135°
B、大于90°且小于135°
C、大于45°且小于90°
D、小于45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
,
OB
是兩個單位向量,且
OA
OB
=0.若點C在∠AOB內(nèi),且∠AOC=30°,
OC
=m
OA
+n
OB
(m,n∈R),則
m
n
=
 

查看答案和解析>>

同步練習(xí)冊答案