6.已知f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與X軸的交點中,相鄰兩個交點之間的距離為$\frac{π}{2}$.若M($\frac{2π}{3}$,-2)為圖象上一個最低點.
(1)求f(x)的解析式;
(2)求函數(shù)y=f(x)圖象的對稱軸方程和對稱中心坐標.
(3)求f(x)的單減區(qū)間.

分析 (1)由題意求得周期,由周期公式求得ω,結(jié)合M($\frac{2π}{3}$,-2)為圖象上一個最低點求得A和φ;
(2)直接由相位的終邊在y軸及x軸上求函數(shù)y=f(x)圖象的對稱軸方程和對稱中心坐標;
(3)由由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$(k∈Z)即可求得f(x)的單調(diào)遞減區(qū)間.

解答 解:(1)由題意知$\frac{1}{2}$T=$\frac{π}{2}$,∴T=π,
即$\frac{2π}{ω}$=π,故ω=2,
又A=2且,2sin(2×$\frac{2π}{3}$x+φ)=-2
φ=$\frac{π}{6}$+2kπ,k∈z,
∵0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
∴函數(shù)解析式是f(x)=2sin(2x+$\frac{π}{6}$);
(2)令2x+$\frac{π}{6}$=$\frac{π}{2}$+2kπ,得x=$\frac{π}{6}$+$\frac{kπ}{2}$,k∈Z,
即函數(shù)y=f(x)圖象的對稱軸方程為x=$\frac{π}{6}$+$\frac{kπ}{2}$,k∈Z,
令2x+$\frac{π}{6}$=π+kπ,得x=$\frac{5π}{12}$+$\frac{kπ}{2}$,k∈Z,
∴函數(shù)y=f(x)圖象的對稱中心坐標為($\frac{5π}{12}$+$\frac{kπ}{2}$,0),k∈Z;
(3))由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$(k∈Z)得,kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$(k∈Z).
∴f(x)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.

點評 本題考查了y=Asin(ωx+φ)型函數(shù)圖象的求法,考查了三角函數(shù)的性質(zhì),訓練了函數(shù)值域的求法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x|x2-x-2≤0},B={x|ln(1-x)>0},則A∩B=( 。
A.(-1,2)B.[-1,1)C.[-1,0)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.復(fù)數(shù)z=-1-2i(i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點位于第三象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列x,a1,a2,y和x,b1,y,b2都是等差數(shù)列,求$\frac{{a}_{2}-{a}_{1}}{_{2}-_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知實數(shù)x、y滿足$\left\{{\begin{array}{l}{y≤2}\\{3x-y-3≤0}\\{2x+y-2≥0}\end{array}}\right.$,則目標函數(shù)z=3x+y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)P={x|x<1},下列關(guān)系式成立的是( 。
A.∅∈PB.0∉PC.0⊆PD.{0}⊆P

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,角A,B,C的對邊分別為a,b,c.已知a=2,c=$\sqrt{2}$,cosA=-$\frac{{\sqrt{2}}}{4}$.則b的值為( 。
A.1B.$\sqrt{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,若輸入n=6,則輸出的S=( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{3}{7}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列各式的大小關(guān)系正確的是( 。
A.sin11°>sin168°B.sin194°<cos160°
C.tan(-$\frac{π}{5}$)<tan(-$\frac{3π}{7}$)D.cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$

查看答案和解析>>

同步練習冊答案