13.已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程;
(2)若平行于OA(O為坐標(biāo)原點(diǎn))的直線l與拋物線C相交于M、N兩點(diǎn),且|MN|=3$\sqrt{5}$.求△AMN的面積.

分析 (1)點(diǎn)的坐標(biāo)代入方程求出p即可得到拋物線方程.然后求解準(zhǔn)線方程.
(2)設(shè)出直線方程,聯(lián)立直線與拋物線方程,利用韋達(dá)定理以及弦長(zhǎng)公式求出t,求出點(diǎn)到直線的距離,然后求解三角形面積.

解答 (10分)解:(1)將(1,-2)代入y2=2px,得(-2)2=2p•1,所以p=2.
故拋物線方程為y2=4x,準(zhǔn)線為x=-1.…(3分)
(2)設(shè)直線l的方程為y=-2x+t,
由$\left\{\begin{array}{l}{y=-2x+t}\\{{y}^{2}=4x}\end{array}\right.$,得y2+2y-2t=0.∴y1+y2=-2,y1y2=-2t,…(5分).
∵直線l與拋物線C有公共點(diǎn),∴△=4+8t≥0,解得t≥-$\frac{1}{2}$.
由|MN|=$\sqrt{1+\frac{1}{2}}\sqrt{4+8t}$=3$\sqrt{5}$得t=4,…(8分)
又A到直線l的距離為d=$\frac{4}{{\sqrt{5}}}$…(9分)
∴△AMN的面積為S=$\frac{1}{2}$|MN|﹒d=6.…(10分)

點(diǎn)評(píng) 本題考查拋物線與直線的位置關(guān)系的綜合應(yīng)用,拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a,b,c,d是四條不同的直線,且a,b為異面直線,命題p“c與a,b都相交,d與a,b都相交”,命題q“c,d為相交直線”,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ.
( I)求直角坐標(biāo)下圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P(l,2),設(shè)圓C與直線l交于點(diǎn)A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四棱錐P-ABCD,地面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點(diǎn).
(1)證明:AE⊥PD;
(Ⅱ)若AB=2,PA=2,求四面體P-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.不論k為任何實(shí)數(shù),直線(k+1)x-(k+2)y+k-3=0恒過定點(diǎn)(-5,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知三棱錐P-ABC的四個(gè)頂點(diǎn)P,A,B,C都在半徑為R的同一個(gè)球面上,若PA,PB,PC兩兩相互垂直,且PA=1,PB=2,PC=3,則R等于( 。
A.$\frac{{\sqrt{14}}}{2}$B.$\sqrt{14}$C.$\frac{{\sqrt{13}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.$\int_0^π{2{{sin}^2}}\frac{x}{2}$dx+$\int_0^1{\sqrt{1-{x^2}}}$dx=$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}3x+1,x<1\\{2^{x+b}},x≥1\end{array}\right.$,若$f[f(\frac{2}{3})]=4$,則b=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$l_1^{\;}$∥α,$l_2^{\;}?α$,則直線$l_1^{\;}$與$l_2^{\;}$的位置關(guān)系是(  )
A.平行或異面B.異面C.相交D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案