精英家教網 > 高中數學 > 題目詳情
(本小題滿分6分)
如圖,在邊長為的菱形中,,,,分別是的中點.

(1)求證: 面;
(2)求證:平面⊥平面
(3)求與平面所成的角的正切值.
,又           故 (2)   又, ,,(3)

試題分析:(1)…………1分


  ……………2分
(2) 
  又
  
  ……………4分
(3)解:。由 (2)知
又EF∥PB, 故EF與平面PAC所成的角為∠BPO………5分
因為BC=a 則CO=,BO=。
在Rt△POC中PO=,故 ∠BPO=
所以直線EF與平面PAC所成的角的正切值為……………6分
點評:立體幾何是高考的高頻考點之一,一般前一兩問多以考查線線,線面,面面的平行與垂直關系為主,最后一問主要考查求體積問題或者夾角問題
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

若兩直線相交,且∥平面,則的位置關系是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

表示兩條直線,表示兩個平面,則下列命題是真命題的是(    )
A.若,,則
B.若
C.若,,則
D.若

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知平行六面體ABCDA1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1ABAD=1,EA1D1的中點。

給出下列四個命題:①∠BCC1為異面直線CC1所成的角;②三棱錐A1ABD是正三棱錐;③CE⊥平面BB1D1D;④;⑤||=.其中正確的命題有_____________.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在組合體中,ABCD—A1B1C1D1是一個長方體,P—ABCD是一個四棱錐.AB=2,BC=3,點P平面CC1D1D,且PC=PD=

(1)證明:PD平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若,當a為何值時,PC//平面

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點.

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平行四邊形中,,,將沿折起,使

(1)求證:平面; 
(2)求平面和平面夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,三棱柱中,平面,,,的中點.

(1)求證:∥平面;
(2)求二面角的余弦值;
(3)設的中點為,問:在矩形內是否存在點,使得平面.若存在,求出點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(10分)用斜二測畫法畫底面半徑為2 cm,高為3 cm的圓錐的直觀圖.

查看答案和解析>>

同步練習冊答案