(本題滿(mǎn)分15分)已知函數(shù)
(1)求函數(shù)的圖像在點(diǎn)處的切線(xiàn)方程;
(2)若,且對(duì)任意恒成立,求的最大值;
(3)當(dāng)時(shí),證明

1)解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7a/0/anula.gif" style="vertical-align:middle;" />,所以,
函數(shù)的圖像在點(diǎn)處的切線(xiàn)方程;…………3分
(2)解:由(1)知,,所以對(duì)任意恒成立,即對(duì)任意恒成立.…………4分
,則,……………………4分
,則
所以函數(shù)上單調(diào)遞增.………………………5分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7b/d/3dpgt.gif" style="vertical-align:middle;" />,所以方程上存在唯一實(shí)根,且滿(mǎn)足
當(dāng),即,當(dāng),即,…6分
所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.
所以.…………7分
所以.故整數(shù)的最大值是3.………………………8分
(3)由(2)知,上的增函數(shù),……………9分
所以當(dāng)時(shí),.…………………10分

整理,得.………………11分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/6/1pppd4.gif" style="vertical-align:middle;" />, 所以.…………………12分
.即.………………13分
所以.………………………14分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題滿(mǎn)分15分)已知點(diǎn)(0,1),,直線(xiàn)、都是圓的切線(xiàn)(點(diǎn)不在軸上).
(Ⅰ)求過(guò)點(diǎn)且焦點(diǎn)在軸上的拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)(1,0)作直線(xiàn)與(Ⅰ)中的拋物線(xiàn)相交于兩點(diǎn),問(wèn)是否存在定點(diǎn)使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及常數(shù);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分15分)

已知命題p,命題q. 若“pq”為真命題,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分15分)已知函數(shù)

(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;

(Ⅲ)當(dāng),且時(shí),證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分15分)已知圓N:和拋物線(xiàn)C:,圓的切線(xiàn)與拋物線(xiàn)C交于不同的兩點(diǎn)A,B,

(1)當(dāng)直線(xiàn)的斜率為1時(shí),求線(xiàn)段AB的長(zhǎng);

(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線(xiàn)對(duì)稱(chēng),問(wèn)是否存在直線(xiàn)使得?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題

(本題滿(mǎn)分15分)已知直線(xiàn),曲線(xiàn)

   (1)若且直線(xiàn)與曲線(xiàn)恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值;

   (2)若,直線(xiàn)與曲線(xiàn)M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來(lái)源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案