設(shè)函數(shù)y=f(x)滿足:對任意的實數(shù)x∈R,有f(sinx)=-cos2x+cos2x+2sinx-3.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若方程有解,求實數(shù)a的取值范圍.
【答案】分析:(Ⅰ)配湊法:f(sinx)=2sin2x-1+1-sin2x+2sinx-3=sin2x+2sinx-3,由此可得f(x);
(Ⅱ)先驗證當(dāng)時方程是否有解,再把方程化為2a=,此時只需求出的值域即可,分類討論:①當(dāng)時,②當(dāng)時,可求出其值域.
解答:解:(Ⅰ)f(sinx)=2sin2x-1+1-sin2x+2sinx-3=sin2x+2sinx-3,
所以f(x)=x2+2x-3(-1≤x≤1).
(Ⅱ)①當(dāng)時,,不成立.
②當(dāng)時,
,則,,
因為函數(shù)上單增,所以
③當(dāng)時,
,則,,
因為函數(shù)g(t)=t-+3在上單增,所以2a≤g()=0⇒a≤0.
綜上,實數(shù)a的取值范圍是(-∞,0].
點評:本題考查函數(shù)解析式的求解及函數(shù)零點問題,考查學(xué)生分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安慶模擬)設(shè)函數(shù)f(x)=cos
x
4
(sin
x
4
+cos
x
4
)-
1
2

(Ⅰ)求函數(shù)y=f(x)取最值時x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=數(shù)學(xué)公式
(Ⅰ)求函數(shù)y=f(x)取最值時x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市武穴市梅川高中高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=
(Ⅰ)求函數(shù)y=f(x)取最值時x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省安慶市重點中學(xué)高三(下)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=
(Ⅰ)求函數(shù)y=f(x)取最值時x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安慶模擬 題型:解答題

設(shè)函數(shù)f(x)=cos
x
4
(sin
x
4
+cos
x
4
)-
1
2

(Ⅰ)求函數(shù)y=f(x)取最值時x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案