已知垂直豎在水平地面上相距20米的兩根旗桿的高分別為10米和15米,地面上的動點(diǎn)P到兩旗桿頂點(diǎn)的仰角相等,則點(diǎn)P的軌跡是(  )
A.橢圓B.圓C.雙曲線D.拋物線
設(shè)兩根旗桿AA1、BB1分別在地面A、B兩處,不妨設(shè)AA1=15m,BB1=10m,地面上的動點(diǎn)P到兩旗桿頂點(diǎn)的仰角相等,
設(shè)滿足條件的點(diǎn)為P,則直角△PAA1直角△PBB1,因此
PA
PB
=
3
2
;
在地面上以AB所在直線為x軸,以AB的中點(diǎn)0為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)P(x,y),A(0,10),B(0,-10)則:
(x-10)2+y2
(x+10)2+y2
=
3
2

化簡整理得:(x+26)2+y2=576
因此在A、B所在直線上距離B點(diǎn)16米A點(diǎn)36處的點(diǎn)為圓心,以24為半徑畫圓,則圓上的點(diǎn)到兩旗桿頂點(diǎn)的仰角相等,
即:地面上的動點(diǎn)P到兩旗桿頂點(diǎn)的仰角相等的點(diǎn)P的軌跡是在A、B所在直線上距離B點(diǎn)16米(距離A點(diǎn)36處)的點(diǎn)為圓心,以24為半徑的圓
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的焦點(diǎn)在軸上.
(1)若橢圓的焦距為1,求橢圓的方程;
(2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上的第一象限內(nèi)的點(diǎn),直線軸與點(diǎn),并且,證明:當(dāng)變化時,點(diǎn)在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一條曲線在x軸的上方,它上面的每一點(diǎn)到點(diǎn)A(0,2)的距離減去它到x軸的距離的差都是2,求這條曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A(-2,0),B(2,0),動點(diǎn)P(x,y)滿足
PA
PB
=x2
,則動點(diǎn)P的軌跡為( 。
A.橢圓B.雙曲線
C.拋物線D.兩條平行直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓(x+1)2+y2=16,圓心為C(-1,0),點(diǎn)A(1,0),Q為圓上任意一點(diǎn),AQ的垂直平分線交CQ于點(diǎn)M,則點(diǎn)M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)求與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0截得的弦長為2
7
的圓的方程.
(Ⅱ)設(shè)定點(diǎn)M(-3,4),動點(diǎn)N在圓x2+y2=4上運(yùn)動,以O(shè)M、ON為兩邊作平行四邊形MONP,求點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:已知線段AB=4,動圓O1與線段AB相切于點(diǎn)C,且AC-BC=2
2
,過點(diǎn)A,B分別作⊙O1的切線,兩切線相交于點(diǎn)P,且P、O1均在AB的同側(cè).
(Ⅰ)建立適當(dāng)坐標(biāo)系,當(dāng)O1位置變化時,求動點(diǎn)P的軌跡E方程;
(Ⅱ)過點(diǎn)B作直線交曲線E于點(diǎn)M、N,求△AMN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,梯形ABCD中,ABCD,且AB⊥平面α,AB=2BC=2CD=4,點(diǎn)P為α內(nèi)一動點(diǎn),且∠APB=∠DPC,則P點(diǎn)的軌跡為(  )
A.直線B.圓C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓x2+y2=25上的動點(diǎn),點(diǎn)D是P在x軸上的射影,M為PD上一點(diǎn),且|MD|=
4
5
|PD|
(Ⅰ)當(dāng)P在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程
(Ⅱ)求過點(diǎn)(3,0)且斜率
4
5
的直線被C所截線段的長度.

查看答案和解析>>

同步練習(xí)冊答案