設一列勻速行駛的火車,通過長860m的隧道時,整個車身都在隧道里的時間是22s.該列車以同樣的速度穿過長790m的鐵橋時,從車頭上橋,到車尾下橋,共用時33s,則這列火車的長度為
 
m.
考點:根據(jù)實際問題選擇函數(shù)類型
專題:函數(shù)的性質及應用
分析:根據(jù)條件設列出長度為x,建立方程關系即可得到結論.
解答: 解:設列車長度為x,則由題意得在橋上的速度為
790+x
33
,
則隧道里速度為
860-x
22
,
則有
790+x
33
=
860-x
22
,
解得x=200,
故答案為:200
點評:本題主要考查函數(shù)模型的應用,根據(jù)條件建立一元一次方程是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,PB⊥AC,AD⊥CD,且AD=CD=2
2
,PA=2,點M在線段PD上.
(Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)若二面角M-AC-D的大小為45°,試確定點M的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a5+2a4=a2a4,前2m(m∈N*)項和是前2m項中所有偶數(shù)項和的
3
2
倍.
(Ⅰ)求通項an
(Ⅱ)已知{bn}滿足bn=(n-λ)an(n∈N*),若{bn}是遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y+2a-b=0(b∈R,0≤a≤2)與圓x2+y2=2有交點,則a+b的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x2+y2=4,則滿足|x+y|≤
2
且|x-y|≤
2
的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y滿足約束條件 
x+y≥5
x-y+5≤0
x≤3
,使z=x+ay(a>0)取得最小的最優(yōu)解有無數(shù)個,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設D是由
|x|≤1
|y|≤1
所確定的區(qū)域,E是由函數(shù)y=x3的圖象與x軸及x=±1圍成的區(qū)域,向D中隨機投一點,則該點落入E中的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱錐P-ABC的側棱PA、PB、PC兩兩垂直,且AB=
2
,則正三棱錐P-ABC的外接球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)f(x)=sin2x-2sinxcosx+3cos2x的圖象沿x軸向左平移m(m>0)個單位,所得函數(shù)g(x)的圖象關于直線x=
π
8
對稱,則m的最小值為( 。
A、
π
4
B、
π
3
C、
π
2
D、
4

查看答案和解析>>

同步練習冊答案