已知橢圓C:(a>b>0)的一個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)
構(gòu)成等邊三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)Q(4,0)且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A1
(。┣笞C:直線A1B過x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo);
(ⅱ)求△OA1B面積的取值范圍.
【答案】分析:(Ⅰ)根據(jù)焦點(diǎn)坐標(biāo)求得c,根據(jù)橢圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.求得a和c的關(guān)系式,進(jìn)而求得a和b,則橢圓的方程可得.
(Ⅱ)(i)設(shè)出直線l的方程,與橢圓方程聯(lián)立消去x,設(shè)出A,B的坐標(biāo),則可利用韋達(dá)定理求得y1y2和y1+y2的表達(dá)式,根據(jù)A點(diǎn)坐標(biāo)求得關(guān)于x軸對(duì)稱的點(diǎn)A1的坐標(biāo),設(shè)出定點(diǎn),利用TB和TA1的斜率相等求得t.
(ii)由(i)中判別式△>0求得m的范圍,表示出三角形OA1BD面積,利用m的范圍,求得m的最大值,繼而求得三角形面積的范圍.
解答:解:(Ⅰ)因?yàn)闄E圓C的一個(gè)焦點(diǎn)是(1,0),所以半焦距c=1.
因?yàn)闄E圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.
所以,解得a=2,b=所以橢圓的標(biāo)準(zhǔn)方程為

(Ⅱ)(i)設(shè)直線l:x=my+4與聯(lián)立并消去x得:(3m2+4)y2+24my+36=0.
,
由A關(guān)于x軸的對(duì)稱點(diǎn)為A1,得A1(x1,-y1),
根據(jù)題設(shè)條件設(shè)定點(diǎn)為T(t,0),得,即
所以=即定點(diǎn)T(1,0).

(ii)由(i)中判別式△>0,解得|m|>2.可知直線A1B過定點(diǎn)T(1,0).
所以|OT||y2-(-y1)|=,
,
令t=|m|記,得,當(dāng)t>2時(shí),φ(t)>0.
在(2,+∞)上為增函數(shù).所以,
.故△OA1B的面積取值范圍是
點(diǎn)評(píng):本題主要考查直線與橢圓的位置關(guān)系、不等式的解法等基本知識(shí),考查運(yùn)算求解能力和分析問題、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三(上)期末質(zhì)量檢查一級(jí)達(dá)標(biāo)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線l過橢圓C的右焦點(diǎn)F2,交橢圓于點(diǎn)A、B.
(。┤魸M足(O為坐標(biāo)原點(diǎn)),求△AOB的面積;
(ⅱ)當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在一點(diǎn)P,使得直線PA、PB的傾斜角互為補(bǔ)角?若存在,求出P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷解析版) 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)

(I)求橢圓C的離心率:

(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆甘肅武威六中高二12月學(xué)段檢測(cè)文科數(shù)學(xué)試題(解析版) 題型:解答題

(12分)已知橢圓C:(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.

 ①求橢圓C的方程.

 ②當(dāng)⊿AMN的面積為時(shí),求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第七次月考理科數(shù)學(xué) 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點(diǎn)A,B且線段AB的垂直平分線過定點(diǎn)C(,0)求實(shí)數(shù)k的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:選擇題

已知橢圓C:(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為kk>0)的直線與橢圓C相交于A、B兩點(diǎn),若。則 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案