【題目】如圖,雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,為雙曲線的頂點(diǎn),為雙曲線虛軸的端點(diǎn),為右焦點(diǎn),延長交于點(diǎn),若是銳角,則該雙曲線的離心率的取值范圍是( )

A. B. C. D.

【答案】D

【解析】試題分析:根據(jù)∠B1PB2夾角,并分別表示出,由∠B1PB2為鈍角,.<0,得ac﹣b2<0,利用橢圓的性質(zhì),可得到e2-e﹣1>0,即可解得離心率的取值范圍.

詳解:

如圖所示,∠B1PB2的夾角;

設(shè)橢圓的長半軸、短半軸、半焦距分別為a,b,c,

=(a,b),=(c,﹣b),

向量的夾角為鈍角時(shí),.<0,

∴ac﹣b2<0,

b2=-a2+c2

∴a2+ac-c2>0;

兩邊除以a2e2-e﹣1>0,

解得e的范圍為,

∵1<e<,

∴1<e<,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若只有一個零點(diǎn),求;

(2)當(dāng)時(shí),對任意,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某實(shí)驗(yàn)室一天的溫度(單位:)隨時(shí)間(單位:)的變化近似滿足函數(shù)關(guān)系:.

(Ⅰ)求實(shí)驗(yàn)室這一天的最大溫差;

(Ⅱ)若要求實(shí)驗(yàn)室溫度不高于,則在哪段時(shí)間實(shí)驗(yàn)室需要降溫?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,解不等式;

(Ⅱ)若不等式至少有一個負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a、b是方程2(lg x)2-lg x4+1=0的兩個實(shí)根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是底面邊長為1的正三棱錐,分別為棱長上的點(diǎn),截面底面,且棱臺與棱錐的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)證明:為正四面體;

(2)若,求二面角的大;(結(jié)果用反三角函數(shù)值表示)

(3)設(shè)棱臺的體積為,是否存在體積為且各棱長均相等的直平行六面體,使得它與棱臺有相同的棱長和?若存在,請具體構(gòu)造出這樣的一個直平行六面體,并給出證明;若不存在,請說明理由.

(注:用平行于底的截面截棱錐,該截面與底面之間的部分稱為棱臺,本題中棱臺的體積等于棱錐的體積減去棱錐的體積.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價(jià)與時(shí)間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式

(2)認(rèn)定市場售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿收益最大?(注:市場售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若不等式對任意的正實(shí)數(shù)都成立,求實(shí)數(shù)的最大整數(shù);

(3)當(dāng)時(shí),若存在實(shí)數(shù),使得,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.

求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);

估計(jì)用電量落在中的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案