精英家教網 > 高中數學 > 題目詳情

【題目】已知 ,

1)若 的充分條件,求實數 的取值范圍;

(2)若 ,”為真命題,“”為假命題,求實數 的取值范圍.

【答案】(1) 實數 的取值范圍是 ;(2) 實數 的取值范圍為 .

【解析】試題分析:1)解命題的不等式可得命題的充要條件,因為 的充分條件,所以兩命題的范圍構成的集合關系是 的子集,可得區(qū)間端點的關系,解不等式組可求得實數 的取值范圍是 .(2)由已知”為真命題,“”為假命題,可得命題 和命題 一真一假,有 假與 真兩種情況,分別得不等式組,分別求解,可求得實數 的取值范圍為

試題解析:(1) 由題知

因為 的充分條件,所以 的子集,

所以 解得 .所以實數 的取值范圍是

(2) 當 時, ,依題意得, 一真一假.

假時,有 無解;

真時,有 解得

所以實數 的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】數列{an}的各項均為正數,其前n項和為Sn , 已知 =1,且a1= ,則tanSn的取值集合是(
A.{0, }
B.{0, , }
C.{0, ,﹣ }
D.{0, ,﹣ }

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義區(qū)間[x1 , x2]的長度為x2﹣x1(x2>x1)單調遞增),函數 (a∈R,a≠0)的定義域與值域都是[m,n](n>m),則區(qū)間[m,n]取最大長度時實數a的值(
A.
B.﹣3
C.1
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ,則滿足f(x)+f(x﹣ )>1的x的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)設m為整數,且對于任意正整數n,(1+ )(1+ )…(1+ )<m,求m的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在五面體ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD=

(1)求證:PN∥AB;

(2)求NC與平面BDN所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是 ( )

A. 的充分不必要條件;

B. 如果命題與命題pq都是真命題,那么命題一定是真命題.

C. 若命題p,則;

D. 命題,則的否命題是:,則

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元263年左右,我國數學家劉徽發(fā)現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為 . (參考數據:sin15°=0.2588,sin7.5°=0.1305)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對任意的實數x,不等式恒成立,則實數m的取值范圍是()
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案