【題目】
(1)設(shè)函數(shù) ,求 的最大值;
(2)試判斷方程 在 內(nèi)存在根的個(gè)數(shù),并說明理由.
【答案】
(1)解:當(dāng) 時(shí),若 , ,
若 ,由 ,可知 ,故 .
當(dāng) 時(shí),由 ,可得:
時(shí), , 單調(diào)遞增; 時(shí), , 單調(diào)遞減,
可知 ,且 .
綜上可得,函數(shù) 的最大值為 .
(2)解:方程 在 內(nèi)存在唯一的根.
理由如下:設(shè) ,
當(dāng) 時(shí), ,
又 ,
所以存在 ,使得: .
因?yàn)? ,
所以當(dāng) 時(shí), ,
當(dāng) 時(shí), ,
所以當(dāng) 時(shí), 單調(diào)遞增,
所以方程 在 內(nèi)存在唯一的根.
【解析】對(duì)于(1)分段函數(shù)最值的研究,要結(jié)合分段函數(shù)的導(dǎo)致,分別求出最值,各段最大值的最大者就是最大值,要注意分類討論。
對(duì)于(2)判斷方程的實(shí)根個(gè)數(shù)時(shí),往往通過函數(shù)的導(dǎo)致,判斷函數(shù)的單調(diào)性,利用函數(shù)的零點(diǎn)推出結(jié)果。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的極值的理解,了解極值反映的是函數(shù)在某一點(diǎn)附近的大小情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng) 時(shí),求 的單調(diào)區(qū)間;
(2)設(shè) , 是曲線 圖象上的兩個(gè)相異的點(diǎn),若直線 的斜率 恒成立,求實(shí)數(shù) 的取值范圍;
(3)設(shè)函數(shù) 有兩個(gè)極值點(diǎn) , ,且 ,若 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=∠BAD=90°,,,F分別為AB,PC的中點(diǎn).
(I)若四棱錐P-ABCD的體積為4,求PA的長;
(II)求證:PE⊥BC;
(III)求PC與平面PAD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖給出的是計(jì)算的值的一個(gè)程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( )
A.
B.i>1005
C.
D.i>1006
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標(biāo)1卷)執(zhí)行右面的程序框圖,如果輸入的t=0.01,則輸出的n=( )
A.5
B.6
C.10
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是由正整數(shù)構(gòu)成的數(shù)表,用aij表示i行第j個(gè)數(shù)(i,j∈N+).此表中ail=aii=i,每行中除首尾兩數(shù)外,其他各數(shù)分別等于其“肩膀”上的兩數(shù)之和.
(1)寫出數(shù)表的第六行(從左至右依次列出).
(2)設(shè)第n行的第二個(gè)數(shù)為bn(n≥2),求bn.
(3)令,記Tn為數(shù)列前n項(xiàng)和,求的最大值,并求此時(shí)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人參加普法知識(shí)競賽,共有5個(gè)不同題目,選擇題3個(gè),判斷題2個(gè),甲、乙兩人各抽一題.
(1)求甲抽到判斷題,乙抽到選擇題的概率是多少;
(2)求甲、乙兩人中至少有一人抽到選擇題的概率是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓 =1(a>b>0),F(xiàn)1 , F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若橢圓的焦距為2,且 =2 ,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中,底面 是平行四邊形,側(cè)面 底面 , 分別為 的中點(diǎn), , , .
(1)求證: 平面 ;
(2)求證:平面 平面 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com