設(shè)全集為U,若存在D1與D2(D1≠D2),D1⊆U,D2⊆U,使得y=f(x),x∈D1與y=f(x),x∈D2的值域相同,則稱這兩個(gè)函數(shù)為一對(duì)“同族函數(shù)“.現(xiàn)在U=[0,2π),f(x)=sinx,值域?yàn)閧
1
2
,
3
2
}的“同族函數(shù)“共有幾對(duì)?
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由:U=[0,2π),可得只有只有當(dāng)D1 =[
π
6
π
3
],且D2 =[
3
,
6
]時(shí),才有 y=f(x),x∈D1與y=f(x),x∈D2的值域相同,從而得出結(jié)論.
解答: 解:∵U=[0,2π),只有當(dāng)D1 =[
π
6
,
π
3
],且D2 =[
3
,
6
]時(shí),
才有 y=f(x),x∈D1與y=f(x),x∈D2的值域相同,
故U=[0,2π)時(shí),f(x)=sinx,值域?yàn)閧
1
2
,
3
2
}的“同族函數(shù)“只有一對(duì).
點(diǎn)評(píng):本題主要考查正弦函數(shù)的圖象特征,考查新定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4},A={1,2,3},B={3,4}.
(1)求A∩B,∁UB;
(2)寫出集合B的所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+(p+2)x+1=0,x∈R},且A⊆{x|x≤0},求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用根式表示sin
π
24
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,P、Q、R分別為BQ、CR、AP的中點(diǎn),設(shè)
CA
=
a
,
CB
=
b
,用
a
、
b
表示
AP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),對(duì)任意的x、y∈R都有f(x+y)=f(x)+f(y)+1成立.
(1)令F(x)=f(x)+1,求證:F(x)為奇函數(shù);
(2)若f(1)=1,且函數(shù)f(x)在R上為增函數(shù),解不等式f(3x+2)>f(2x+3)+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過P(3,4),且A(-2,3),B(8,13)到直線l距離相等,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=n2+4n+2,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1=
2
2
BC,D,E,F(xiàn)分別是BC,BB1,CC1的中點(diǎn).
(1)求證A1E∥平面ADF;
(2)(理)求二面角B-AD-F的大小的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案