分析 利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值,即得到f(x)的值域.
解答 解:函數(shù)$f(x)=2{sin^2}x+2\sqrt{3}sinx•cosx+1\;(x∈R)$.
化簡可得:f(x)=1-cos2x+$\sqrt{3}$sin2x+1=$\sqrt{3}$sin2x-cos2x+2=2sin(2x-$\frac{π}{6}$)+2.
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}=π$.
∵sin(2x-$\frac{π}{6}$)∈[-1,1],
∴函數(shù)f(x)的值域?yàn)閇0,4].
令$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[$-\frac{π}{6}+kπ$,$\frac{π}{3}+kπ$],k∈Z.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3x2-2)'=3x | B. | (log2x)'=$\frac{1}{x•ln2}$ | C. | (cosx)'=sinx | D. | ($\frac{1}{lnx}$)'=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $?{x}∈R,\frac{2}{x}+ln{x}<0$ | B. | $?{x}∈R,\frac{2}{x}+ln{x}≤0$ | ||
C. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}<0$ | D. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}≤0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2+x+1≥0 | B. | ?x∉R,x2+x+1≥0 | ||
C. | ?x0∉R,x02+x0+1<0 | D. | ?x0∈R,x02+x0+1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 12 | C. | 11 | D. | 10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com