5.5個人排成一排,在下列情況下,各有多少種不同排法?
(Ⅰ)甲不在排頭,也不在排尾;
(Ⅱ)甲、乙、丙三人必須在一起.

分析 (Ⅰ)甲不在排頭,也不在排尾,先排甲,其他人任意排,問題得以解決,
(Ⅱ)甲、乙、丙三人必須在一起,先把甲乙丙三人捆綁在一起,再和另外2人全排,問題得以解決

解答 解:(Ⅰ)若甲不在排頭,也不在排尾,排列的方法有:A31A44=72種;
(Ⅱ)甲、乙、丙三人必須在一起,排列的方法有:A33A33═36種.

點評 本題考查排列、組合的應(yīng)用,注意特殊問題的處理方法,如相鄰用捆綁法,不能相鄰用插空法,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z滿足z•(1+i)=2i(i是虛數(shù)單位),則|z|=(  )
A.$\sqrt{2}$B.2C.1D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若sin($\frac{π}{8}$+α)=$\frac{3}{4}$,則cos($\frac{3π}{8}$-α)=(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-$\frac{\sqrt{7}}{4}$D.$\frac{\sqrt{7}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,$-\frac{π}{2}$$<φ<\frac{π}{2}$)的部分圖象如圖所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.從五件正品,一件次品中隨機取出兩件,則取出的兩件產(chǎn)品中恰好是一件正品,一件次品的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.雙曲線x2-2y2=4的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知向量$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),$\overrightarrow c$=({1,0).
(1)求向量$\overrightarrow b$+$\overrightarrow c$的長度的最大值;
(2)設(shè)α=$\frac{π}{4}$,$\frac{17π}{12}$<β<$\frac{7π}{4}$,且$\overrightarrow a$⊥(${\overrightarrow b$-$\frac{{3\sqrt{2}}}{5}$$\overrightarrow c}$),求$\frac{{sin2β-2{{sin}^2}β}}{1+tanβ}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.x,y 滿足約束條件$\left\{\begin{array}{l}x+y-2≤0\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,若 z=y-ax 取得最大值的最優(yōu)解不唯一,則實數(shù) a 的值為(  )
A.$\frac{1}{2}$或-1B.2 或$\frac{1}{2}$C.2 或1D.2 或-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,在正方體ABCD-A1B1C1D1中,棱長為1,點P為線段A1C上的動點(包含線段端點),則下列結(jié)論正確的①②④
①當$\overrightarrow{{A_1}C}=3\overrightarrow{{A_1}P}$時,D1P∥平面BDC1
②當$\overrightarrow{{A_1}C}=3\overrightarrow{{A_1}P}$時,A1C⊥平面D1AP;
③∠APD1的最大值為90°;
④AP+PD1的最小值為$\frac{{2\sqrt{6}}}{3}$.

查看答案和解析>>

同步練習冊答案