已知函數(shù)y=x2+x與y=g(x)的圖象關(guān)于點(-2,3)對稱,則g(x)的解析式為
g(x)=-x2-7x-6
g(x)=-x2-7x-6
分析:函數(shù)y=g(x)關(guān)于點(m,n)對稱的曲線方程為y=2n-g(2m-x).依此規(guī)律,可得y=-g(-4-x)+6,即為原函數(shù)
y=x2+x的表達(dá)式,最后用配方的方法,求出g(x)的解析式.
解答:解:函數(shù)y=g(x)的圖象關(guān)于點(-2,3)對稱的圖象
對應(yīng)的解析式:6-y=g(-4-x)
所以有y=-g(-4-x)+6=x2+x
即g(-4-x)=6-(x2+x)=-x2-x+6=-(-x-4)2-7(-x-4)-6
將-x-4換成x,得g(x)=-x2-7x-6
故答案為:g(x)=-x2-7x-6
點評:本題考查了函數(shù)解析式的求法,屬于中檔題.函數(shù)y=g(x)關(guān)于點(m,n)對稱的曲線方程為y=2n-g(2m-x).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)已知函數(shù)y=x2-x的定義域為{0,1,2},那么該函數(shù)的值域為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-x+n
x2+1
(n∈N*,y≠1)的最小值為an,最大值為bn,且cn=4(anbn-
1
2
).?dāng)?shù)列{cn}的前n項和為Sn
(1)請用判別式法求a1和b1;
(2)求數(shù)列{cn}的通項公式cn;
(3)若{dn}為等差數(shù)列,且dn=
Sn
n+c
(c為非零常數(shù)),設(shè)f(n)=
dn
(n+36)dn+1
(n∈N*),求f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-x的定義域為{0,1,2},那么該函數(shù)的值域為
{0,2}
{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-x-5x+2
,x∈(-2,4],求此函數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案