(Ⅰ)試用an表示an+1;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)Tn=,求證:1≤Tn<2(n∈N*).
解:(Ⅰ)因?yàn)殛P(guān)于x的二次方程anx2-an+1x+1=0有兩根αn,βn,
所以
又即1-
∴1-+(2n+1)·=0,所以an+1=an+2n+1
(Ⅱ)由an+1=an+2n+1得an+1-an=2n+1 則an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1
=[2(n-1)+1]+[2(n-2)+1]+…+ (2×2+1)+(2×1+1)+1=2·+(n-1)+1
所以,數(shù)列{an}的通項(xiàng)公式為an=n2
(Ⅲ)由(Ⅱ)知an=n2,所以
Tn= (n
當(dāng)n=1時(shí),T1==1,顯然有T1<2.
當(dāng)n≥2時(shí),因?yàn)?SUB> 即
所以Tn
綜上可知 1≤Tn<2(n∈N*).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:廣東省潮州金山中學(xué)2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)文科試卷 題型:044
若實(shí)數(shù)m,n為關(guān)于x的一元二次方程Ax2+Bx+C=0的兩個(gè)實(shí)數(shù)根,則有Ax2+Bx+C=A(x-m)(x-n),由系數(shù)可得:m+n=-,且m·n=.設(shè)x1,x2,x3為關(guān)于x的方程f(x)=x3-ax2+bx-c=0,(a,b,c∈R)的三個(gè)實(shí)數(shù)根.
(1)寫出三次方程的根與系數(shù)的關(guān)系;即x1+x2+x3=_________;x1x2+x2x3+x3x1=_________;x1·x2·x3=_________
(2)若a,b,c均大于零,試證明:x1,x2,x3都大于零
(3)若a∈Z,b∈Z,|b|<2,f(x)在x=α,x=β處取得極值,且-1<α<β<1,求方程f(x)=0三個(gè)實(shí)根兩兩不相等時(shí),實(shí)數(shù)c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com