【題目】如圖所示,是臨江公園內(nèi)一個(gè)等腰三角形形狀的小湖(假設(shè)湖岸是筆直的),其中兩腰,.為了給市民營造良好的休閑環(huán)境,公園管理處決定在湖岸,上分別取點(diǎn),(異于線段端點(diǎn)),在湖上修建一條筆直的水上觀光通道(寬度不計(jì)),使得三角形和四邊形的周長相等.

(1)若水上觀光通道的端點(diǎn)為線段的三等分點(diǎn)(靠近點(diǎn)),求此時(shí)水上觀光通道的長度;

(2)當(dāng)為多長時(shí),觀光通道的長度最短并求出其最短長度.

【答案】(1) 水上觀光通道的長度為米;(2) 當(dāng)米時(shí),水上觀光通道的長度取得最小值,最小值為米.

【解析】分析:(1)在等腰中,過點(diǎn),先計(jì)算出,再利用余弦定理求出EF的長度.(2) 設(shè),,先求出EF的表達(dá)式,再利用基本不等式求其最短長度.

詳解:(1)在等腰中,過點(diǎn),

中,由,即,∴,,

∴三角形和四邊形的周長相等.

,即,

.

為線段的三等分點(diǎn)(靠近點(diǎn)),∴,

中,

米.

即水上觀光通道的長度為米.

(2)由(1)知,,設(shè),,在中,由余弦定理,得

.

,∴.

,當(dāng)且僅當(dāng)取得等號(hào),

所以,當(dāng)米時(shí),水上觀光通道的長度取得最小值,最小值為米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線有相同的焦點(diǎn)為原點(diǎn),點(diǎn)是準(zhǔn)線上一動(dòng)點(diǎn),點(diǎn)在拋物線上,且,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一名學(xué)生騎自行車上學(xué),從他家到學(xué)校的途中有個(gè)交通崗,假設(shè)他在各個(gè)交通崗遇到紅燈的事件是相互獨(dú)立的,并且概率都是.求:

)這名學(xué)生在途中遇到次紅燈次數(shù)的概率.

)這名學(xué)生在首次停車前經(jīng)過了個(gè)路口的概率.

)這名學(xué)生至少遇到一次紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則方程 為正實(shí)數(shù))的實(shí)數(shù)根最多有_____個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線C的焦點(diǎn)在軸上,離心率為,其一個(gè)頂點(diǎn)的坐標(biāo)是(0,1.

Ⅰ)求雙曲線C的標(biāo)準(zhǔn)方程;

Ⅱ)若直線與該雙曲線交于AB兩點(diǎn),且A、B的中點(diǎn)為(2,3),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.

(1)從袋中隨機(jī)取出兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率.

(2)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為n,求n<m+2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的圖像可由的圖像平移得到,對(duì)于任意的實(shí)數(shù),均有成立,且存在實(shí)數(shù),使得為奇函數(shù).

(Ⅰ)求函數(shù)的解析式.

(Ⅱ)函數(shù)的圖像與直線有兩個(gè)不同的交點(diǎn),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 上頂點(diǎn)為,右焦點(diǎn)為過右頂點(diǎn)作直線,且與軸交于點(diǎn)又在直線和橢圓上分別取點(diǎn)和點(diǎn),滿足為坐標(biāo)原點(diǎn)),連接.

1)求的值,并證明直線與圓相切;

(2)判斷直線與圓是否相切?若相切,請(qǐng)證明;若不相切,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】”是“對(duì)任意的正數(shù) ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

【答案】A

【解析】分析:根據(jù)基本不等式,我們可以判斷出”?“對(duì)任意的正數(shù)x,2x+≥1”對(duì)任意的正數(shù)x2x+≥1”?“a=

真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.

解答:解:當(dāng)“a=時(shí),由基本不等式可得:

對(duì)任意的正數(shù)x,2x+≥1”一定成立,

“a=”?“對(duì)任意的正數(shù)x,2x+≥1”為真命題;

對(duì)任意的正數(shù)x,2x+≥1時(shí),可得“a≥

對(duì)任意的正數(shù)x2x+≥1”?“a=為假命題;

“a=對(duì)任意的正數(shù)x2x+≥1充分不必要條件

故選A

型】單選題
結(jié)束】
9

【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為 的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面

其中一定正確的選項(xiàng)是( )

A. ①③ B. ②③ C. ②③④ D. ①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案