精英家教網 > 高中數學 > 題目詳情
函數y=2|x|的定義域為[a,b],值域為[1,16],當a 變動時,函數b=g(a)的圖象可以是

分析:根據a變動時,以及函數的值域可知b為定值4,結合選項即可得到答案.
解答:解:根據所給的選項可知,a≤0
a變動時,函數y=2|x|的定義域為[a,b],值域為[1,16],
∴2|b|=16,b=4,
故答案為 ②.
點評:本題主要考查了指數函數的定義域和值域,同時考查了函數圖象,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f(x)=ax+
1x+b
(a≠0)
的圖象過點(0,-1)且與直線y=-1有且只有一個公共點;設點P(x0,y0)是函數y=f(x)圖象上任意一點,過點P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心Q;
(3)證明:線段PM,PN長度的乘積PM•PN為定值;并用點P橫坐標x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數學 來源:同步題 題型:解答題

如圖,已知:射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動點P(x,y)在∠AOx的內部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k。
(1)當k為定值時,動點P的縱坐標y是橫坐標x的函數,求這個函數y=f(x)的解析式;
(2)根據k的取值范圍,確定y=f(x)的定義域。

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

設函數f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數y=f(x)的圖像是一個中心對稱圖形,并求其對稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

設函數f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數y=f(x)的圖像是一個中心對稱圖形,并求其對稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)如圖9-3,已知:射線OA為y=kx(k>0,x>0),射線OB為y= -kx(x>0),動點P(x,y)在∠AOx的內部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.

   (1)當k為定值時,動點P的縱坐標y是橫坐標x的函數,求這個函數y=f(x)的解析式;

   (2)根據k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

同步練習冊答案