拋物線x2=py上一點M(x0,3)到焦點的距離為5,則實數(shù)p的值為( 。
A、-8B、4C、8D、16
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)拋物線x2=my可知準線方程y=-
p
4
,進而根據(jù)拋物線的定義可知點M到其焦點的距離等于點到其準線的距離,求得實數(shù)m的值.
解答: 解:拋物線準線方程為y=-
p
4
,
∵拋物線x2=my上一點M(x0,3)到焦點的距離為5,
p
4
+3=5,解得p=8,
故選:C.
點評:本題考查拋物線的定義,拋物線上的點到焦點的距離,叫焦半徑.到焦點的距離常轉(zhuǎn)化為到準線的距離求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)O,A,B,C是平面中的四個點,
OC
=m
OA
+n
OB
,證明:若m+n=1,則A,B,C三點共線,反之亦然.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義兩個平面向量的一種運算
a
?
b
=|
a
|•|
b
|sin<
a
,
b
>,則關(guān)于平面向量上述運算的以下結(jié)論中,
a
?
b
=
b
?
a
,②λ(
a
?
b
)=(λ
a
)?
b
,③若
a
b
,則
a
?
b
=0④若
a
=λ
b
,且λ>0,則(
a
+
b
)?
c
=(
a
?
c
)+(
b
?
c
).
恒成立的有
 
.(填序號 )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

loga
2
3
<1(0<a<1),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于四面體ABCD,下列命題正確的是
 
(寫出所有正確命題的編號)
①相對棱AB與CD所在的直線異面;
②若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在的直線異面;
③分別作三組相對棱中點的連線,所得的三條線段相交于一點;
④最長棱必有某個端點,由它引出的另兩條棱的長度之和大于最長棱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|1≤4x-3•2x+3≤7},
(1)求集合M;
(2)求函數(shù)f(x)=4 x-
1
2
-2x+1+5,x∈M的值域及單增區(qū)間?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列給出的四個命題中:
①在△ABC中,∠A<∠B的充要條件是sinA<sinB;
②在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=
x
2
的圖象只有一個公共點;
③函數(shù)y=f(1+x)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對稱;
④在實數(shù)數(shù)列{an}中,已知a1=0,|a2|=|a1-1|,|a3|=|a2-1|…|an|=|an-1-1|,則a1+a2+a3+a4的最大值為2.
其中為真命題的是
 
.(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設(shè)P,Q是拋物線y2=2px(p>0)上不同兩點,已知P,Q到y(tǒng)軸的距離的積為雙曲線
x2
4
-
y2
12
=1的離心率的2倍,OP⊥OQ.
(1)求該拋物線的標準方程.
(2)過Q的直線分別與拋物線和x軸交于R,T兩點,且RQ=QT,試求弦PR長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)向量
a
,
b
,
c
均為單位向量,且
a
b
=0
,則(
a
-
c
)•(
b
-
c
)
的最小值為(  )
A、-2
B、
2
-3
C、-1
D、1-
2

查看答案和解析>>

同步練習冊答案