a≤-
由log2x+3)+logx≤3得
x
fx)的定義域?yàn)椋?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131449119213.gif" style="vertical-align:middle;" />,+∞).
fx)在定義域[,+∞)內(nèi)單調(diào)遞減,
∴當(dāng)x2x1時(shí),fx1)-fx2)>0恒成立,即有(ax1+2)-(ax2+2)
>0ax1x2)-()>0
x1x2)(a+)>0恒成立.
x1x2,∴(x1x2)(a+)>0
a+<0.
x1x2>-,
要使a<-恒成立,
a的取值范圍是a≤-.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)是定義在[-1,1]上的奇函數(shù). 當(dāng)a, b∈[-1,1],且a+b≠0時(shí),有
(1)判斷函數(shù)f(x)的的單調(diào)性,并給以證明;
(2)若f(1)=1,且f(x)≤m2-2bm+1對(duì)所有x∈[-1,1],b∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),試判斷H(x)=f(-2x)+g(x)在的單調(diào)性并加以證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



(Ⅰ)求的最小正周期;
(Ⅱ)求在區(qū)間上的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)判斷函數(shù)上的單調(diào)性,并用定義證明;
(2)若,求在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(I)求實(shí)數(shù)a的取值范圍;
(II)在(I)的結(jié)論下,設(shè),求函數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)的最小值為-1,求k的值并求此時(shí)x的取值集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

上是減函數(shù),則b的取值范圍是
(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為(  )
       B     C        D  

查看答案和解析>>

同步練習(xí)冊(cè)答案