精英家教網 > 高中數學 > 題目詳情
精英家教網已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F,過F且斜率為
3
的直線交C于A、B兩點,若
AF
=4
FB
,則C的離心率為(  )
A、
6
5
B、
7
5
C、
5
8
D、
9
5
分析:設雙曲線的有準線為l,過A、B分別作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直線AB的斜率可知直線AB的傾斜角,進而推|AD|=
1
2
|AB|
,由雙曲線的第二定義|AM|-|BN|=|AD|,進而根據
.
AF
=4
.
FB
,求得離心率.
解答:解:設雙曲線C:
x2
a2
-
y2
b2
=1
的右準線為l,
過A、B分別作AM⊥l于M,BN⊥l于N,BD⊥AM于D,
由直線AB的斜率為
3
,
知直線AB的傾斜角為60°
∴∠BAD=60°
|AD|=
1
2
|AB|
,
由雙曲線的第二定義有:
|AM|-|BN|=|AD|=
1
e
(|
AF
|-|
FB
|)

=
1
2
|AB|=
1
2
(|
AF
|+|
FB
|)

1
e
•3|
FB
|=
5
2
|
FB
|
,∴e=
6
5

故選A.
點評:本題主要考查了雙曲線的定義.解題的關鍵是利用了雙曲線的第二定義,找到了已知條件與離心率之間的聯(lián)系.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•許昌三模)已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過左焦點且斜率為1的直線與雙曲線C的左、右支各有一個交點,若拋物線y2=4cx的準線被雙曲線截得的線段長大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是
2
,
3
2
,
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•寧波模擬)已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數集M,設p:“k∈M”; q:“函數f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域為R”.則P是Q成立的( 。

查看答案和解析>>

科目:高中數學 來源:寧波模擬 題型:單選題

已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數集M,設p:“k∈M”; q:“函數f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域為R”.則P是Q成立的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過左焦點且斜率為1的直線與雙曲線C的左、右支各有一個交點,若拋物線y2=4cx的準線被雙曲線截得的線段長大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是______.

查看答案和解析>>

同步練習冊答案