【題目】下列方程表示的直線傾斜角為135°的是(
A.y=x﹣1
B.y﹣1= (x+2)
C. + =1
D. x+2y=0

【答案】C
【解析】解:根據(jù)題意,若直線傾斜角為135°,則其斜率k=tan135°=﹣1,

依次分析選項(xiàng):

對于A、其斜率k=1,不合題意,

對于B、其斜率k= ,不合題意,

對于C、將 + =1變形可得y=﹣x+5,其斜率k=﹣1,符合題意,

對于D、將 x+2y=0變形可得y=﹣ x,其斜率k=﹣ ,不合題意,

故選:C.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線的傾斜角(當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定α=0°).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +
(1)求f(x)的定義域A;
(2)若函數(shù)g(x)=x2+ax+b的零點(diǎn)為﹣1.5,當(dāng)x∈A時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點(diǎn). (Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x26x+5. (Ⅰ)求 的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為6的正方體ABCD﹣A1B1C1D1中,M是BC的中點(diǎn),點(diǎn)P是面DCC1D1內(nèi)的動點(diǎn),且滿足∠APD=∠MPC,則三棱錐P﹣BCD的體積最大值是(
A.36
B.12
C.24
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知R(x0 , y0)是橢圓C: =1上的一點(diǎn),從原點(diǎn)O向圓R:(x﹣x02+(y﹣y02=8作兩條切線,分別交橢圓于點(diǎn)P,Q.
(1)若R點(diǎn)在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1 , k2 , 求k1k2的值;
(3)試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的正視圖1是一個(gè)底邊長為4、腰長為3的等腰三角形,圖2、圖53分別是四棱錐P﹣ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P﹣ABCD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是由滿足下列性質(zhì)的函數(shù)f(x)的全體所組成的集合:在定義域內(nèi)存在x0 , 使得f(x0+1)=f(x0)+f(1)成立.
(1)指出函數(shù)f(x)= 是否屬于M,并說明理由;
(2)設(shè)函數(shù)f(x)=lg 屬于M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系x0y中,已知點(diǎn)A(﹣ ,0),B( ),E為動點(diǎn),且直線EA與直線EB的斜率之積為﹣ . (Ⅰ)求動點(diǎn)E的軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)F(1,0)的直線l與曲線C相交于不同的兩點(diǎn)M,N.若點(diǎn)P在y軸上,且|PM|=|PN|,求點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案