【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設,證明:曲線沒有經(jīng)過坐標原點的切線.
【答案】(1)在單調(diào)遞減,在單調(diào)遞增;(2)證明見解析
【解析】
(1)先求得導函數(shù),根據(jù)導函數(shù)的符號即可判斷單調(diào)區(qū)間.
(2)先討論過原點的切線斜率是否存在.當斜率不存在時,切線為y軸,分析可知不成立.當斜率存在時,可設出切線方程和切點坐標.建立方程組,判斷方程組無解,即可證明不存在這樣的切線.
(1)定義域為,
.
當時,,
當時,.
所以在單調(diào)遞減,在單調(diào)遞增.
(2)因為定義域為,所以軸不是曲線的切線.
當經(jīng)過坐標原點的直線不是軸時,設是曲線的切線,切點是.
因為,所以.
消去得,即.
由(1)知在處取得最小值,則,
所以無解.
因此曲線沒有經(jīng)過坐標原點的切線.
科目:高中數(shù)學 來源: 題型:
【題目】定義域是上的連續(xù)函數(shù)圖像的兩個端點為、,是圖像上任意一點,過點作垂直于軸的直線交線段于點(點與點可以重合),我們稱的最大值為該函數(shù)的“曲徑”,下列定義域是上的函數(shù)中,曲徑最小的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設各項均為正數(shù)的數(shù)列的前項和為,已知,且對一切都成立.
(1)當時.
①求數(shù)列的通項公式;
②若,求數(shù)列的前項的和;
(2)是否存在實數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的左右焦點分別為,,離心率為,橢圓C上的一點P到,的距離之和等于4.
(1)求橢圓C的標準方程;
(2)設,過橢圓C的右焦點的直線與橢圓C交于A,B兩點,若滿足恒成立,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商家統(tǒng)計了去年,兩種產(chǎn)品的月銷售額(單位:萬元),繪制了月銷售額的雷達圖,圖中點表示產(chǎn)品2月份銷售額約為20萬元,點表示產(chǎn)品9月份銷售額約為25萬元.
根據(jù)圖中信息,下面統(tǒng)計結(jié)論錯誤的是( )
A.產(chǎn)品的銷售額極差較大B.產(chǎn)品銷售額的中位數(shù)較大
C.產(chǎn)品的銷售額平均值較大D.產(chǎn)品的銷售額波動較小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
Ⅰ當時,取得極值,求的值并判斷是極大值點還是極小值點;
Ⅱ當函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某學校高二年級學生的物理成績,從中抽取名學生的物理成績(百分制)作為樣本,按成績分成5組:,頻率分布直方圖如圖所示,成績落在中的人數(shù)為20.
男生 | 女生 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
(1)求和的值;
(2)根據(jù)樣本估計總體的思想,估計該校高二學生物理成績的平均數(shù)和中位數(shù);
(3)成績在80分以上(含80分)為優(yōu)秀,樣本中成績落在中的男、女生人數(shù)比為1:2,成績落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認為物理成績優(yōu)秀與性別有關.
參考公式和數(shù)據(jù):
0.50 | 0.05 | 0.025 | 0.005 | |
0.455 | 3.841 | 5.024 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學著作《孫子算經(jīng)》中記有如下問題:“今有五等諸侯,其分橘子六十顆,人別加三顆”,問:“五人各得幾何?”其意思為:“現(xiàn)在有5個人分60個橘子,他們分得的橘子個數(shù)成公差為3的等差數(shù)列,問5人各得多少橘子.”根據(jù)這個問題,下列說法錯誤的是( )
A.得到橘子最多的諸侯比最少的多12個
B.得到橘子的個數(shù)排名為正數(shù)第3和倒數(shù)第3的是同一個人
C.得到橘子第三多的人所得的橘子個數(shù)是12
D.所得橘子個數(shù)為倒數(shù)前3的諸侯所得的橘子總數(shù)為24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com