13.函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x-3,x≤0\\-2+lnx,x>0\end{array}\right.$的零點(diǎn)為-1或e2

分析 根據(jù)已知中函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x-3,x≤0\\-2+lnx,x>0\end{array}\right.$,分段求出各段上函數(shù)的零點(diǎn),綜合可得答案.

解答 解:當(dāng)x≤0時(shí),令x2-2x-3=0得:
x=-1,或x=3(舍去);
當(dāng)x>0時(shí),令-2+lnx=0得:
x=e2,
綜上可得函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x-3,x≤0\\-2+lnx,x>0\end{array}\right.$的零點(diǎn)為:-1或e2,
故答案為:-1或e2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的零點(diǎn)的判定定理,分段函數(shù)的應(yīng)用,分類討論思想,難度基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校從高三年級(jí)期末考試的學(xué)生中抽出20名學(xué)生,其成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示:
(1)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(2)從成績(jī)是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)诓煌謹(jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\sqrt{1-x}+\sqrt{x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.[0,1]C.[0,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{5}-\frac{y^2}{4}=1$的(  )
A.實(shí)軸長(zhǎng)為$2\sqrt{5}$,虛軸長(zhǎng)為4,漸近線方程為$y=±\frac{{2\sqrt{5}}}{5}x$,離心率$e=\frac{{3\sqrt{5}}}{5}$
B.實(shí)軸長(zhǎng)為$2\sqrt{5}$,虛軸長(zhǎng)為4,漸近線方程為$y=±\frac{{\sqrt{5}}}{5}x$,離心率$e=\frac{9}{5}$
C.實(shí)軸長(zhǎng)為$2\sqrt{5}$,虛軸長(zhǎng)為4,漸近線方程為$y=±2\sqrt{5}x$,離心率$e=\frac{6}{5}$
D.實(shí)軸長(zhǎng)為$2\sqrt{5}$,虛軸長(zhǎng)為8,漸近線方程為$y=±\frac{{\sqrt{5}}}{2}x$,離心率$e=\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若復(fù)數(shù)z滿足$z+i=\frac{2-i}{i}$,則復(fù)數(shù)z的模為( 。
A.10B.$\sqrt{10}$C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知${S_n}=2{a_n}-1({n∈{N^*}})$
(I)求數(shù)列{an}的通項(xiàng)公式;
( II)若bn=log2an+1,求數(shù)列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若偶函數(shù)f(x)在區(qū)間[-3,-1]上有最大值6,則f(x)在區(qū)間[1,3]上有(  )
A.最大值6B.最小值6C.最大值-6D.最小值-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=5cosφ}\\{y=bsinφ}\end{array}\right.$(φ為參數(shù),0<b<5)
以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$c(c為曲線C的半焦距)
(Ⅰ)求曲線C的普通方程及直線l的直角坐標(biāo)方程
(Ⅱ)點(diǎn)M為曲線C上任意一點(diǎn),若點(diǎn)M到直線l的距離的最大值為4$\sqrt{2}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=|x-2|+|x+2|.
(1)求不等式f(x)≥6的解集;
(2)若不等式f(x)<a+x的解集不為∅,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案