分析 根據(jù)已知中函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x-3,x≤0\\-2+lnx,x>0\end{array}\right.$,分段求出各段上函數(shù)的零點(diǎn),綜合可得答案.
解答 解:當(dāng)x≤0時(shí),令x2-2x-3=0得:
x=-1,或x=3(舍去);
當(dāng)x>0時(shí),令-2+lnx=0得:
x=e2,
綜上可得函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x-3,x≤0\\-2+lnx,x>0\end{array}\right.$的零點(diǎn)為:-1或e2,
故答案為:-1或e2
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的零點(diǎn)的判定定理,分段函數(shù)的應(yīng)用,分類討論思想,難度基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 實(shí)軸長(zhǎng)為$2\sqrt{5}$,虛軸長(zhǎng)為4,漸近線方程為$y=±\frac{{2\sqrt{5}}}{5}x$,離心率$e=\frac{{3\sqrt{5}}}{5}$ | |
B. | 實(shí)軸長(zhǎng)為$2\sqrt{5}$,虛軸長(zhǎng)為4,漸近線方程為$y=±\frac{{\sqrt{5}}}{5}x$,離心率$e=\frac{9}{5}$ | |
C. | 實(shí)軸長(zhǎng)為$2\sqrt{5}$,虛軸長(zhǎng)為4,漸近線方程為$y=±2\sqrt{5}x$,離心率$e=\frac{6}{5}$ | |
D. | 實(shí)軸長(zhǎng)為$2\sqrt{5}$,虛軸長(zhǎng)為8,漸近線方程為$y=±\frac{{\sqrt{5}}}{2}x$,離心率$e=\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | $\sqrt{10}$ | C. | 4 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值6 | B. | 最小值6 | C. | 最大值-6 | D. | 最小值-6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com