已知數(shù)列{an}的首項為a1=5,前n項和為Sn,且Sn+1=2Sn+n+5(n∈N*).
(1)證明數(shù)列{an+1}是等比數(shù)列;
(2)令f(x)=a1x+a2x2+…+anxn,f′(x)是函數(shù)f(x)的導函數(shù),令bn=f′(1).求數(shù)列{bn}的通項公式.
【答案】
分析:(1)利用遞推式,再寫一式,兩式相減,利用等比數(shù)列的定義,即可得到結論;
(2)先確定數(shù)列{a
n}的通項,再求導,賦值,再用錯位相減法,即可求得數(shù)列{b
n}的通項公式.
解答:(1)證明:∵S
n+1=2S
n+n+5,
∴n≥2時,S
n=2S
n-1+n+4,
兩式相減可得a
n+1+1=2(a
n+1)
當n=1時,a
2=2a
1+1=11,∴a
2+1=12,
∵a
1=5,∴a
1+1=6,
∴數(shù)列{a
n+1}是以6為首項,2為公比的等比數(shù)列;
(2)由(1)知a
n+1=6×2
n-1,∴a
n=3×2
n-1,
∵f(x)=a
1x+a
2x
2+…+a
nx
n,
∴f′(x)=a
1+2a
2x+…+na
nx
n-1,
∴f′(1)=a
1+2a
2+…+na
n=(3×2-1)+2(3×2
2-1)+…+n(3×2
n-1)
=3(2+2×2
2+…+n×2
n)-(1+2+3+…+n)
令S=2+2×2
2+…+n×2
n,則2S=2
2+2×2
3+…+n×2
n+1兩式相減可得S=(n-1)×2
n+1+2
∴b
n=f′(1)=
.
點評:本題考查等比數(shù)列的證明,考查數(shù)列的通項與求和,確定數(shù)列的通項,正確運用求和方法是關鍵.