下列函數(shù)的值域為[1,+∞)的是(  )
A、y=2x-3
B、y=
x+1
x-1
C、y=(
1
2
x+1
D、y=log2(x2-2x+3)
考點:復(fù)合函數(shù)的單調(diào)性
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:運用常見函數(shù)的單調(diào)性和值域,分別求出它們,即可判斷值域為[1,+∞)的函數(shù).
解答: 解:對于A.函數(shù)y=2x-3的定義域為R,則值域為R,則A不滿足;
對于B.定義域為{x|x≠1},y=
2
x-1
+1≠1,則值域為{y|y≠1},則B不滿足;
對于C.定義域為R,y=1+(
1
2
x>1,值域為(1,+∞),則C不滿足;
對于D.由x2-2x+3>0,解得,x∈R,且x2-2x+3=(x-1)2+2≥2,則log2(x2-2x+3)≥log22=1,
則值域為[1,+∞),則D滿足.
故選D.
點評:本題考查函數(shù)的值域的求法,考查函數(shù)的單調(diào)性的運用,考查運算能力,屬于基礎(chǔ)題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a<
1
4
,則化簡
4(4a-1)2
的結(jié)果是( 。
A、
1-4a
B、
4a-1
C、-
1-4a
D、-
4a-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(0.125) -
1
3
+
(1-
2
)2
+(lg5)2+lg2lg50
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別是a、b、c,已知cos
C
2
=
5
3

(1)求cosC的值;
(2)若acosB+BcosA=2,a=
2
,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x-y+5=0與直線x+my+4=0互相平行,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x+ay-1=0與(3a-1)x-ay-1=0平行,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=sin(2x+
π
6
)的圖象上所有點向右平移
π
6
個單位,則得到的圖象所對應(yīng)的函數(shù)解析式為( 。
A、y=sin(2x+
π
6
B、y=sin(2x+
π
3
C、y=sin(2x-
π
6
D、y=sin(2x-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx=-
4
5
,且x在第三象限,則tan2x=(  )
A、-
24
7
B、
24
7
C、-
7
24
D、
7
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx+siny=
1
3
,cosx-cosy=
1
5
,求cos(x+y),cos(x-y),sin(x-y).

查看答案和解析>>

同步練習(xí)冊答案