【題目】甲,乙,丙三位學(xué)生獨(dú)立地解同一道題,甲做對的概率為 ,乙,丙做對的概率分別為m,n(m>n),且三位學(xué)生是否做對相互獨(dú)立.記ξ為這三位學(xué)生中做對該題的人數(shù),其分布列為:

ξ

0

1

2

3

P

a

b


(1)求至少有一位學(xué)生做對該題的概率;
(2)求m,n的值;
(3)求ξ的數(shù)學(xué)期望.

【答案】
(1)解:設(shè)“甲做對”為事件A,“乙做對”為事件B,“丙做對”為事件C,

由題意知,

由于事件“至少有一位學(xué)生做對該題”與事件“ξ=0”是對立的,

所以至少有一位學(xué)生做對該題的概率是


(2)解:由題意知 ,

,

整理得 mn=

由m>n,解得 ,


(3)解:由題意知 = ,

b=P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)= ,

∴ξ的數(shù)學(xué)期望為Eξ= =


【解析】(1)利用“至少有一位學(xué)生做對該題”事件的對立事件的概率即可得出;(2)利用P(ξ=0)與P(ξ=3)的概率即可得出m,n;(3)利用(2)及 與b=P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)即可得出a,b.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面積S= c2 , 求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,4),B(4,2),C(6,6).

(1)求角A的余弦值;

(2)作AB的底邊上的高CD,D為垂足,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知yf(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2-2x.

(1)寫出函數(shù)yf(x)的解析式

(2)若方程f(x)=a恰有3個(gè)不同的解,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的半焦距為,左焦點(diǎn)為,右頂點(diǎn)為,拋物線與橢圓交于兩點(diǎn),若四邊形是菱形,則橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2ωx﹣ )(ω>0)的最小正周期為4π,則(
A.函數(shù)f(x)的圖象關(guān)于點(diǎn)( ,0)對稱
B.函數(shù)f(x)的圖象關(guān)于直線x= 對稱
C.函數(shù)f(x)的圖象在( ,π)上單調(diào)遞減
D.函數(shù)f(x)的圖象在( ,π)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:

年份

2010

2011

2012

2013

2014

時(shí)間代號(hào)

1

2

3

4

5

儲(chǔ)蓄存款 (千億元)

6

7

8

9

10

(1)求關(guān)于的回歸方程;

(2)用所求回歸方程預(yù)測該地區(qū)2015年的人民幣儲(chǔ)蓄存款.

附:回歸方程中, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中學(xué)校在2015年的一次體能測試中,規(guī)定所有男生必須依次參加50米跑、立定跳遠(yuǎn)和一分鐘的引體向上三項(xiàng)測試,只有三項(xiàng)測試全部達(dá)標(biāo)才算合格,已知男生甲的50米跑和立定跳遠(yuǎn)的測試與男生乙的50米跑測試已達(dá)標(biāo),男生甲還需要參加一分鐘的引體向上測試,男生乙還需要參加立定跳遠(yuǎn)和一分鐘引體向上兩項(xiàng)測試,若甲參加一分鐘引體向上測試達(dá)標(biāo)的概率為p,乙參加立定跳遠(yuǎn)和一分鐘引體向上的測試達(dá)標(biāo)的概率均為 ,甲乙每一項(xiàng)測試是否達(dá)標(biāo)互不影響,已知甲和乙同時(shí)合格的概率為
(1)求p的值,并計(jì)算甲和乙恰有一人合格的概率;
(2)在三項(xiàng)測試項(xiàng)目中,設(shè)甲達(dá)標(biāo)的測試項(xiàng)目項(xiàng)數(shù)為x,乙達(dá)標(biāo)的測試項(xiàng)目項(xiàng)數(shù)為y,記ξ=x+y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中.

(I)求證:AC⊥BD1;

(Ⅱ)是否存在直線與直線AA1CC1,BD1都相交?若存在,請你在圖中畫出兩條滿足條件的直線(不必說明畫法及理由);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案